Heat transfer and pressure drop correlations of nanofluids: A state of art review

Heat transfer and pressure drop correlations of nanofluids: A state of art review Nanofluids, a new class of thermo-fluids engineered by the stable suspension of nano-sized metallic and nonmetallic entities (particles, fibers, tubes, droplets) in base fluids with optimized thermal conductivity, demonstrate the advantages of efficient thermal management with miniaturization. However, thermal conductivity intensification is not the only mechanism responsible for the enhanced thermal efficiency of the nanofluids, other factors including gravity, inter-phase frictional force, sedimentation, dispersion, ballistic phonon advection, non-uniform shear rate, nanoparticle migration induced by viscosity gradient and layering at the solid-liquid interface also play a significant role. The hydrothermal characteristics of nanofluids are determined by the net influence of the relative modifications in the thermophysical properties of the nanofluids which are sensitive towards multiple parameters including particle morphology (size and shape), material and concentration, base fluid properties and pH value, fluid temperature and additives. Consequently, conventional correlations remain unsuccessful in explaining idiosyncrasies of nanofluids and a few studies contributed to the formulation of heat transfer and friction factor correlations for multifarious combinations of nanofluids and operating conditions. Although a group of researchers validated the applicability of the classical friction factor models for nanofluids, nevertheless, a few contradictory studies emphasized that penalty in pressure drop effectuated by nanoparticles is sufficiently large to be neglected. The primary objective of the present manuscript is to review the research progress in the development of heat transfer and pressure drop correlations for nanofluids under miscellaneous geometrical, operating and boundary conditions. Furthermore, a comprehensive comparison of the few heat transfer correlations proposed under identical construction and flow conditions has been also presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Elsevier

Heat transfer and pressure drop correlations of nanofluids: A state of art review

Loading next page...
 
/lp/elsevier/heat-transfer-and-pressure-drop-correlations-of-nanofluids-a-state-of-RfJ5zDgqwd
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1386-1425
D.O.I.
10.1016/j.rser.2018.03.108
Publisher site
See Article on Publisher Site

Abstract

Nanofluids, a new class of thermo-fluids engineered by the stable suspension of nano-sized metallic and nonmetallic entities (particles, fibers, tubes, droplets) in base fluids with optimized thermal conductivity, demonstrate the advantages of efficient thermal management with miniaturization. However, thermal conductivity intensification is not the only mechanism responsible for the enhanced thermal efficiency of the nanofluids, other factors including gravity, inter-phase frictional force, sedimentation, dispersion, ballistic phonon advection, non-uniform shear rate, nanoparticle migration induced by viscosity gradient and layering at the solid-liquid interface also play a significant role. The hydrothermal characteristics of nanofluids are determined by the net influence of the relative modifications in the thermophysical properties of the nanofluids which are sensitive towards multiple parameters including particle morphology (size and shape), material and concentration, base fluid properties and pH value, fluid temperature and additives. Consequently, conventional correlations remain unsuccessful in explaining idiosyncrasies of nanofluids and a few studies contributed to the formulation of heat transfer and friction factor correlations for multifarious combinations of nanofluids and operating conditions. Although a group of researchers validated the applicability of the classical friction factor models for nanofluids, nevertheless, a few contradictory studies emphasized that penalty in pressure drop effectuated by nanoparticles is sufficiently large to be neglected. The primary objective of the present manuscript is to review the research progress in the development of heat transfer and pressure drop correlations for nanofluids under miscellaneous geometrical, operating and boundary conditions. Furthermore, a comprehensive comparison of the few heat transfer correlations proposed under identical construction and flow conditions has been also presented.

Journal

Spectrochimica Acta Part A: Molecular and Biomolecular SpectroscopyElsevier

Published: Sep 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off