Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China

Health and economic benefits of building ventilation interventions for reducing indoor PM2.5... China is confronted with serious PM2.5 pollution, especially in the capital city of Beijing. Exposure to PM2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM2.5 pollution. Different building interventions have been introduced to mitigate indoor PM2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM2.5 emissions are absent; however, if an indoor PM2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM2.5 filtration efficiency is no <90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM2.5 exposure and result in excess costs to the residents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China

Loading next page...
 
/lp/elsevier/health-and-economic-benefits-of-building-ventilation-interventions-for-115yYyHJ7G
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.119
Publisher site
See Article on Publisher Site

Abstract

China is confronted with serious PM2.5 pollution, especially in the capital city of Beijing. Exposure to PM2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM2.5 pollution. Different building interventions have been introduced to mitigate indoor PM2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM2.5 emissions are absent; however, if an indoor PM2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM2.5 filtration efficiency is no <90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM2.5 exposure and result in excess costs to the residents.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial