Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces

Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces Brain–machine interfaces (BMIs) enable humans to interact with devices by modulating their brain signals. Despite impressive technological advancements, several obstacles remain. The most commonly used BMI control signals are derived from the brain areas involved in primary sensory- or motor-related processing. However, these signals only reflect a limited range of human intentions. Therefore, additional sources of brain activity for controlling BMIs need to be explored. In particular, higher-order cognitive brain signals, specifically those encoding goal-directed intentions, are natural candidates for enlarging the repertoire of BMI control signals and making them more efficient and intuitive. Thus, here, we identify the prefrontal brain area as a key target region for future BMIs, given its involvement in higher-order, goal-oriented cognitive processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces

Loading next page...
 
/lp/elsevier/harnessing-prefrontal-cognitive-signals-for-brain-machine-interfaces-JiAMe60wqP
Publisher
Elsevier Current Trends
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2017.03.008
Publisher site
See Article on Publisher Site

Abstract

Brain–machine interfaces (BMIs) enable humans to interact with devices by modulating their brain signals. Despite impressive technological advancements, several obstacles remain. The most commonly used BMI control signals are derived from the brain areas involved in primary sensory- or motor-related processing. However, these signals only reflect a limited range of human intentions. Therefore, additional sources of brain activity for controlling BMIs need to be explored. In particular, higher-order cognitive brain signals, specifically those encoding goal-directed intentions, are natural candidates for enlarging the repertoire of BMI control signals and making them more efficient and intuitive. Thus, here, we identify the prefrontal brain area as a key target region for future BMIs, given its involvement in higher-order, goal-oriented cognitive processes.

Journal

Trends in BiotechnologyElsevier

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off