Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i

Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i Conventional and novel observations made in the Waimea River basin between 1960 and 1995 permit the total riverine mass flux to be estimated and the influence that flow restoration will have on sediment dynamics in the river's lower reaches to be assessed. Flows between the threshold for sediment transport (~6.0 m3 s−1) and the most effective flow (80.7 m3 s−1) recur annually and transport ~60% of the Waimea River's suspended sediment load. Discharges of this magnitude essentially were unaffected by plantation era agricultural diversions of 2.3 ± 0.7 m3 s−1. The modern-day mass flux from the Waimea River basin is 155 ± 38 t km−2 y−1, and comparison with an independent cosmogenic nuclide-based estimate implies that it has remained at about this level for the past 10 ky. Previous work indicated that: (i) most of the sand the Waimea River transports to the coast is derived from steep, rapidly eroding, sparsely vegetated, bedrock-dominated hillslopes; and (ii) the sediment transport regime of the Waimea River is supply-limited at very high discharges (recurrence interval > 2.5 years). Consequently, major floods tend to remove sand from the estuary. Climate change has caused a statewide decline in heavy rainfall, and a commensurate decline in the magnitude of peak flows in the basin's pristine, undiverted headwaters over the past 97 years. The effect this secular change in climate presently is having on streamflow was foreshadowed in the late 1970s by a naturally occurring, warm Pacific Decadal Oscillation phase reduction in the magnitude of flows with low exceedance probabilities. Additionally, the controlling base level at the river mouth has risen and been displaced seaward. Simple proportionality approximations show that, for a constant sediment supply, aggradation will occur if either the magnitude of flows with a low exceedance probability declines and/or base level rises. Thus, anthropogenic stresses on Waimea River's lower reaches are not derived from the within-basin influence agricultural diversions exert on the flow regime and will not be resolved by restoring flow to the river. These stresses primarily accrue from extrinsic factors that will continue to influence the river's hydrologic and sediment transport regimes until global, offsetting, climate-ameliorating measures are implemented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i

Loading next page...
 
/lp/elsevier/great-expectations-flow-restoration-and-sediment-transport-in-the-1Ivb5b6mBq
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2018.01.023
Publisher site
See Article on Publisher Site

Abstract

Conventional and novel observations made in the Waimea River basin between 1960 and 1995 permit the total riverine mass flux to be estimated and the influence that flow restoration will have on sediment dynamics in the river's lower reaches to be assessed. Flows between the threshold for sediment transport (~6.0 m3 s−1) and the most effective flow (80.7 m3 s−1) recur annually and transport ~60% of the Waimea River's suspended sediment load. Discharges of this magnitude essentially were unaffected by plantation era agricultural diversions of 2.3 ± 0.7 m3 s−1. The modern-day mass flux from the Waimea River basin is 155 ± 38 t km−2 y−1, and comparison with an independent cosmogenic nuclide-based estimate implies that it has remained at about this level for the past 10 ky. Previous work indicated that: (i) most of the sand the Waimea River transports to the coast is derived from steep, rapidly eroding, sparsely vegetated, bedrock-dominated hillslopes; and (ii) the sediment transport regime of the Waimea River is supply-limited at very high discharges (recurrence interval > 2.5 years). Consequently, major floods tend to remove sand from the estuary. Climate change has caused a statewide decline in heavy rainfall, and a commensurate decline in the magnitude of peak flows in the basin's pristine, undiverted headwaters over the past 97 years. The effect this secular change in climate presently is having on streamflow was foreshadowed in the late 1970s by a naturally occurring, warm Pacific Decadal Oscillation phase reduction in the magnitude of flows with low exceedance probabilities. Additionally, the controlling base level at the river mouth has risen and been displaced seaward. Simple proportionality approximations show that, for a constant sediment supply, aggradation will occur if either the magnitude of flows with a low exceedance probability declines and/or base level rises. Thus, anthropogenic stresses on Waimea River's lower reaches are not derived from the within-basin influence agricultural diversions exert on the flow regime and will not be resolved by restoring flow to the river. These stresses primarily accrue from extrinsic factors that will continue to influence the river's hydrologic and sediment transport regimes until global, offsetting, climate-ameliorating measures are implemented.

Journal

GeomorphologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off