Governing failure criterion of short-span hybrid FRP-UHPC beams subjected to high shear forces

Governing failure criterion of short-span hybrid FRP-UHPC beams subjected to high shear forces An experimental investigation into the shear performance of a recently developed hybrid section constructed from a glass fibre reinforced polymer (GFRP) hollow box section with an ultra-high performance concrete (UHPC) flange and a bottom sheet made of steel fibre reinforced polymer (SFRP) or carbon fibre reinforced polymer (CFRP) is presented. This section has superior structural properties compared to sections made from conventional materials. Seven specimens were tested by applying a point load 280 mm from one support over a clear span of 1120 mm to induce shear failure. Two main parameters were investigated, namely, the effect of flange dimensions and the type of reinforcement used as the bottom (tension) sheet. All specimens failed similarly, indicating consistent behaviour for shear failure regardless of the changing parameters. Failure involved crack propagation at the corners of the GRFP box section followed by cracking of UHPC flange. Traditional calculations, based on the elastic analysis, of the shear stresses at the failure point are presented showing that high shear stresses are not the only cause of the mode of failure observed. The cause of failure is interpreted using a simple finite element analysis. Given the cause of failure, special consideration should be given to the design of the fibre orientation at the corner regions of such box sections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Governing failure criterion of short-span hybrid FRP-UHPC beams subjected to high shear forces

Loading next page...
 
/lp/elsevier/governing-failure-criterion-of-short-span-hybrid-frp-uhpc-beams-m2DzcAT02X
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.11.003
Publisher site
See Article on Publisher Site

Abstract

An experimental investigation into the shear performance of a recently developed hybrid section constructed from a glass fibre reinforced polymer (GFRP) hollow box section with an ultra-high performance concrete (UHPC) flange and a bottom sheet made of steel fibre reinforced polymer (SFRP) or carbon fibre reinforced polymer (CFRP) is presented. This section has superior structural properties compared to sections made from conventional materials. Seven specimens were tested by applying a point load 280 mm from one support over a clear span of 1120 mm to induce shear failure. Two main parameters were investigated, namely, the effect of flange dimensions and the type of reinforcement used as the bottom (tension) sheet. All specimens failed similarly, indicating consistent behaviour for shear failure regardless of the changing parameters. Failure involved crack propagation at the corners of the GRFP box section followed by cracking of UHPC flange. Traditional calculations, based on the elastic analysis, of the shear stresses at the failure point are presented showing that high shear stresses are not the only cause of the mode of failure observed. The cause of failure is interpreted using a simple finite element analysis. Given the cause of failure, special consideration should be given to the design of the fibre orientation at the corner regions of such box sections.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off