Going with the flow: Planktonic processing of dissolved organic carbon in streams

Going with the flow: Planktonic processing of dissolved organic carbon in streams A large part of the organic carbon in streams is transported by pulses of terrestrial dissolved organic carbon (tDOC) during hydrological events, which is more pronounced in agricultural catchments due to their hydrological flashiness. The majority of the literature considers stationary benthic biofilms and hyporheic biofilms to dominate uptake and processing of tDOC. Here, we argue for expanding this viewpoint to planktonic bacteria, which are transported downstream together with tDOC pulses, and thus perceive them as a less variable resource relative to stationary benthic bacteria. We show that pulse DOC can contribute significantly to the annual DOC export of streams and that planktonic bacteria take up considerable labile tDOC from such pulses in a short time frame, with the DOC uptake being as high as that of benthic biofilm bacteria. Furthermore, we show that planktonic bacteria efficiently take up labile tDOC which strongly increases planktonic bacterial production and abundance. We found that the response of planktonic bacteria to tDOC pulses was stronger in smaller streams than in larger streams, which may be related to bacterial metacommunity dynamics. Furthermore, the response of planktonic bacterial abundance was influenced by soluble reactive phosphorus concentration, pointing to phosphorus limitation. Our data suggest that planktonic bacteria can efficiently utilize tDOC pulses and likely determine tDOC fate during downstream transport, influencing aquatic food webs and related biochemical cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Going with the flow: Planktonic processing of dissolved organic carbon in streams

Loading next page...
 
/lp/elsevier/going-with-the-flow-planktonic-processing-of-dissolved-organic-carbon-UD0Dz3f30G
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.285
Publisher site
See Article on Publisher Site

Abstract

A large part of the organic carbon in streams is transported by pulses of terrestrial dissolved organic carbon (tDOC) during hydrological events, which is more pronounced in agricultural catchments due to their hydrological flashiness. The majority of the literature considers stationary benthic biofilms and hyporheic biofilms to dominate uptake and processing of tDOC. Here, we argue for expanding this viewpoint to planktonic bacteria, which are transported downstream together with tDOC pulses, and thus perceive them as a less variable resource relative to stationary benthic bacteria. We show that pulse DOC can contribute significantly to the annual DOC export of streams and that planktonic bacteria take up considerable labile tDOC from such pulses in a short time frame, with the DOC uptake being as high as that of benthic biofilm bacteria. Furthermore, we show that planktonic bacteria efficiently take up labile tDOC which strongly increases planktonic bacterial production and abundance. We found that the response of planktonic bacteria to tDOC pulses was stronger in smaller streams than in larger streams, which may be related to bacterial metacommunity dynamics. Furthermore, the response of planktonic bacterial abundance was influenced by soluble reactive phosphorus concentration, pointing to phosphorus limitation. Our data suggest that planktonic bacteria can efficiently utilize tDOC pulses and likely determine tDOC fate during downstream transport, influencing aquatic food webs and related biochemical cycles.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off