Glutamate infusion coupled with hypoxia has a neuroprotective effect in the rat

Glutamate infusion coupled with hypoxia has a neuroprotective effect in the rat Traumatic brain injury leads to a rise in glutamate, interference with oxygen supply and secondary neuronal death in the region surrounding the primary lesion. In the present experiments we have examined the effect of combining glutamate infusion with hypoxia on both brain metabolism and neuronal death. We have used microdialysis in unanaesthetised rats with a novel dual assay for glucose and lactate to monitor the temporal relation of changes in these metabolites resulting from infusion of 100 mM glutamate alone or combined with a reduction of inspired oxygen to 8%. In a parallel series of experiments we have compared the size of neuronal lesions under the same experimental conditions. We have used MAP2 antibody staining to measure the size of the neuronal lesion. Our results demonstrate that a 30 min glutamate infusion causes an immediate increase in neuronal glucose utilisation and a rise in lactate production. When hypoxia is added during the last 15 min of glutamate infusion there is a small rise in glucose and a large additional increase in lactate. The size of the neuronal lesions produced by infusion of 100 mM glutamate is reduced by the addition of hypoxia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neuroscience Methods Elsevier

Glutamate infusion coupled with hypoxia has a neuroprotective effect in the rat

Loading next page...
 
/lp/elsevier/glutamate-infusion-coupled-with-hypoxia-has-a-neuroprotective-effect-Nj8XKn2cNq
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0165-0270
eISSN
1872-678X
D.O.I.
10.1016/S0165-0270(02)00174-7
Publisher site
See Article on Publisher Site

Abstract

Traumatic brain injury leads to a rise in glutamate, interference with oxygen supply and secondary neuronal death in the region surrounding the primary lesion. In the present experiments we have examined the effect of combining glutamate infusion with hypoxia on both brain metabolism and neuronal death. We have used microdialysis in unanaesthetised rats with a novel dual assay for glucose and lactate to monitor the temporal relation of changes in these metabolites resulting from infusion of 100 mM glutamate alone or combined with a reduction of inspired oxygen to 8%. In a parallel series of experiments we have compared the size of neuronal lesions under the same experimental conditions. We have used MAP2 antibody staining to measure the size of the neuronal lesion. Our results demonstrate that a 30 min glutamate infusion causes an immediate increase in neuronal glucose utilisation and a rise in lactate production. When hypoxia is added during the last 15 min of glutamate infusion there is a small rise in glucose and a large additional increase in lactate. The size of the neuronal lesions produced by infusion of 100 mM glutamate is reduced by the addition of hypoxia.

Journal

Journal of Neuroscience MethodsElsevier

Published: Sep 30, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off