Glucose Tolerance and Peripheral Glucose Utilization in Rainbow Trout ( Oncorhynchus mykiss ), American Eel ( Anguilla rostrata ), and Black Bullhead Catfish ( Ameiurus melas )

Glucose Tolerance and Peripheral Glucose Utilization in Rainbow Trout ( Oncorhynchus mykiss ),... This study tests the hypothesis that glucose tolerance in fish is related to nutrient preference and is correlated with white muscle glucose transporter and phosphorylation (hexokinase) activities. Glucose clearance was investigated in the carnivorous rainbow trout ( Oncorhynchus mykiss ) and American eel ( Anguilla rostrata ) (feeding and fasting) and the omnivorous black bullhead catfish ( Ameiurus melas ). Glucose tolerance was assessed by an intravenous glucose tolerance test, injecting 250 mg glucose/kg body weight and tracking blood glucose concentrations over 24 h. Both feeding eel and feeding catfish returned plasma glucose levels to baseline within 60 min of glucose injection. Glucose values remained elevated for more than 360 min in both the food-deprived eel and the feeding rainbow trout. Glucose transport studies in white muscle membrane vesicles provided evidence for the presence of a stereospecific, saturable glucose transporter in all three species. Affinity constants ( K m ) ranged from 8 to 14 mM while V max values ranged from 75 to 150 pmol/s/mg protein. Neither kinetic parameter differed significantly between species. Cytochalasin B and phloretin did not significantly inhibit glucose transport, implying that these transporters are unlike the mammalian muscle glucose transporters (GLUT). In fact, Northern and Western blot analyses of mRNA and protein from white and red muscles and heart did not detect a mammalian-type GLUT-1 or -4 in any of the species examined. Glucose phosphorylation indicated the presence of a hexokinase activity (low K m enzyme) but again there were no differences in kinetic parameters between species. These studies demonstrate that glucose tolerance in fish is species-dependent but none of the parameters examined clearly differentiate between the species examined. Certainly a stereospecific glucose transporter exists in white skeletal muscle of the fish studied but no molecular or kinetic similarities to the mammalian GLUTs were found. Whether these transporters are insulin-sensitive or contribute to glucose tolerance requires further molecular characterization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png General and Comparative Endocrinology Elsevier

Glucose Tolerance and Peripheral Glucose Utilization in Rainbow Trout ( Oncorhynchus mykiss ), American Eel ( Anguilla rostrata ), and Black Bullhead Catfish ( Ameiurus melas )

Loading next page...
 
/lp/elsevier/glucose-tolerance-and-peripheral-glucose-utilization-in-rainbow-trout-jWem0f7gQ6
Publisher
Elsevier
Copyright
Copyright © 2001 Academic Press
ISSN
0016-6480
D.O.I.
10.1006/gcen.2001.7620
Publisher site
See Article on Publisher Site

Abstract

This study tests the hypothesis that glucose tolerance in fish is related to nutrient preference and is correlated with white muscle glucose transporter and phosphorylation (hexokinase) activities. Glucose clearance was investigated in the carnivorous rainbow trout ( Oncorhynchus mykiss ) and American eel ( Anguilla rostrata ) (feeding and fasting) and the omnivorous black bullhead catfish ( Ameiurus melas ). Glucose tolerance was assessed by an intravenous glucose tolerance test, injecting 250 mg glucose/kg body weight and tracking blood glucose concentrations over 24 h. Both feeding eel and feeding catfish returned plasma glucose levels to baseline within 60 min of glucose injection. Glucose values remained elevated for more than 360 min in both the food-deprived eel and the feeding rainbow trout. Glucose transport studies in white muscle membrane vesicles provided evidence for the presence of a stereospecific, saturable glucose transporter in all three species. Affinity constants ( K m ) ranged from 8 to 14 mM while V max values ranged from 75 to 150 pmol/s/mg protein. Neither kinetic parameter differed significantly between species. Cytochalasin B and phloretin did not significantly inhibit glucose transport, implying that these transporters are unlike the mammalian muscle glucose transporters (GLUT). In fact, Northern and Western blot analyses of mRNA and protein from white and red muscles and heart did not detect a mammalian-type GLUT-1 or -4 in any of the species examined. Glucose phosphorylation indicated the presence of a hexokinase activity (low K m enzyme) but again there were no differences in kinetic parameters between species. These studies demonstrate that glucose tolerance in fish is species-dependent but none of the parameters examined clearly differentiate between the species examined. Certainly a stereospecific glucose transporter exists in white skeletal muscle of the fish studied but no molecular or kinetic similarities to the mammalian GLUTs were found. Whether these transporters are insulin-sensitive or contribute to glucose tolerance requires further molecular characterization.

Journal

General and Comparative EndocrinologyElsevier

Published: Apr 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off