Global biomass mapping for an improved understanding of the CO 2 balance—the Earth observation mission Carbon-3D

Global biomass mapping for an improved understanding of the CO 2 balance—the Earth observation... Understanding global climate change and developing strategies for sustainable use of our environmental resources are major scientific and political challenges. In response to an announcement of the German Aerospace Center (DLR) for a national Earth observation (EO) mission, the Friedrich-Schiller University Jena and the JenaOptronik GmbH proposed the EO mission Carbon-3D. The data products of this mission will for the first time accurately estimate aboveground biomass globally, one of the most important parameters of the carbon cycle. Simultaneous acquisition of multiangle optical with Light Detection and Ranging (LIDAR) observations is unprecedented. The optical imager extrapolates the laser-retrieved height profiles to biophysical vegetation maps. This innovative mission will reduce uncertainties about net effects of deforestation and forest regrowth on atmospheric CO 2 concentrations and will also provide key biophysical information for biosphere models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Global biomass mapping for an improved understanding of the CO 2 balance—the Earth observation mission Carbon-3D

Loading next page...
 
/lp/elsevier/global-biomass-mapping-for-an-improved-understanding-of-the-co-2-pNSX8BqQ7P
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Inc.
ISSN
0034-4257
DOI
10.1016/j.rse.2004.09.006
Publisher site
See Article on Publisher Site

Abstract

Understanding global climate change and developing strategies for sustainable use of our environmental resources are major scientific and political challenges. In response to an announcement of the German Aerospace Center (DLR) for a national Earth observation (EO) mission, the Friedrich-Schiller University Jena and the JenaOptronik GmbH proposed the EO mission Carbon-3D. The data products of this mission will for the first time accurately estimate aboveground biomass globally, one of the most important parameters of the carbon cycle. Simultaneous acquisition of multiangle optical with Light Detection and Ranging (LIDAR) observations is unprecedented. The optical imager extrapolates the laser-retrieved height profiles to biophysical vegetation maps. This innovative mission will reduce uncertainties about net effects of deforestation and forest regrowth on atmospheric CO 2 concentrations and will also provide key biophysical information for biosphere models.

Journal

Remote Sensing of EnvironmentElsevier

Published: Jan 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off