Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia

Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia Experiments are described in which a rat hippocampal slice preparation was used along with the metabolic glial inhibitor, fluorocitrate (FC), to investigate the role of glial-made lactate and its shuttling to neurons in posthypoxia recovery of synaptic function. After testing two less effective concentrations of FC, only 10.1±6.5% of slices treated with 100 μ M of the metabolic toxin recovered synaptic function at the end of 10-min hypoxia and 30-min reoxygenation. In contrast, 79.6±7.4% of control, untreated slices recovered synaptic function after 10-min hypoxia and 30-min reoxygenation. The low rate of recovery of synaptic function posthypoxia in FC-treated slices occurred despite the abundance of glucose present in the medium before, during, and after hypoxia. The amount of lactate produced by FC-treated slices during the hypoxic period was only 62% of that produced by control, untreated slices. Supplementing FC-treated slices with exogenous lactate significantly increased the posthypoxia recovery rate of synaptic function. These results strongly support our previous findings concerning the mandatory role of lactate as an aerobic energy substrate for the recovery of synaptic function posthypoxia and clearly show that the bulk of the lactate needed for this recovery originates in glial cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia

Loading next page...
 
/lp/elsevier/glia-are-the-main-source-of-lactate-utilized-by-neurons-for-recovery-7s3U0T00wQ
Publisher
Elsevier
Copyright
Copyright © 1997 Elsevier Science B.V.
ISSN
0006-8993
D.O.I.
10.1016/S0006-8993(97)81708-8
Publisher site
See Article on Publisher Site

Abstract

Experiments are described in which a rat hippocampal slice preparation was used along with the metabolic glial inhibitor, fluorocitrate (FC), to investigate the role of glial-made lactate and its shuttling to neurons in posthypoxia recovery of synaptic function. After testing two less effective concentrations of FC, only 10.1±6.5% of slices treated with 100 μ M of the metabolic toxin recovered synaptic function at the end of 10-min hypoxia and 30-min reoxygenation. In contrast, 79.6±7.4% of control, untreated slices recovered synaptic function after 10-min hypoxia and 30-min reoxygenation. The low rate of recovery of synaptic function posthypoxia in FC-treated slices occurred despite the abundance of glucose present in the medium before, during, and after hypoxia. The amount of lactate produced by FC-treated slices during the hypoxic period was only 62% of that produced by control, untreated slices. Supplementing FC-treated slices with exogenous lactate significantly increased the posthypoxia recovery rate of synaptic function. These results strongly support our previous findings concerning the mandatory role of lactate as an aerobic energy substrate for the recovery of synaptic function posthypoxia and clearly show that the bulk of the lactate needed for this recovery originates in glial cells.

Journal

Brain ResearchElsevier

Published: Nov 7, 1997

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off