Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method

Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a... Geometrically nonlinear bending deformation of Functionally Graded Beams (FGBs) with variable thickness is simulated by a meshless Smoothed Hydrodynamic Particle (SPH) method. The material properties of FGB is assumed to be varied smoothly in the thickness according to exponent-law distribution. To prevent the mesh-distortion in element-based numerical method, meshless SPH method is adopted, where corrective smoothed particle method and total-Lagrangian formulation are employed to improve its precision and stability. To validate the present SPH method, several numerical examples are performed and compared to analytical and finite element solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method

Loading next page...
 
/lp/elsevier/geometrically-nonlinear-bending-analysis-of-functionally-graded-beam-k8ry3QWs1L
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.063
Publisher site
See Article on Publisher Site

Abstract

Geometrically nonlinear bending deformation of Functionally Graded Beams (FGBs) with variable thickness is simulated by a meshless Smoothed Hydrodynamic Particle (SPH) method. The material properties of FGB is assumed to be varied smoothly in the thickness according to exponent-law distribution. To prevent the mesh-distortion in element-based numerical method, meshless SPH method is adopted, where corrective smoothed particle method and total-Lagrangian formulation are employed to improve its precision and stability. To validate the present SPH method, several numerical examples are performed and compared to analytical and finite element solutions.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off