Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China

Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field,... The molecular composition, stable carbon and hydrogen isotopes and light hydrocarbons of the Upper Paleozoic tight gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. Tight gas in the Daniudi gas field displays a dryness coefficient (C1/C1–5) of 0.845–0.977 with generally positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of tight gas are dominated by methylcyclohexane and iso-alkanes, respectively. The identification of gas origin and gas-source correlation indicate that tight gas is coal-type gas, and the gases reservoired in the Lower Permian Shanxi Fm. (P1s) and Lower Shihezi Fm. (P1x) had a good affinity and were derived from the P1s coal-measure source rocks, whereas the gas reservoired in the Upper Carboniferous Taiyuan Fm. (C3t) was derived from the C3t coal-measure source rocks. The molecular and methane carbon isotopic fractionations of natural gas support that the P1x gas was derived from the P1s source rocks. The differences of geochemical characteristics of the C3t gas from different areas in the field suggest the effect of maturity difference of the source rocks rather than the diffusive migration, and the large-scale lateral migration of the C3t gas seems unlikely. Comparative study indicates that the differences of the geochemical characteristics of the P1s gases from the Yulin and Daniudi gas fields originated likely from the maturity difference of the in-situ source rocks, rather than the effect of large-scale lateral migration of the P1s gases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine and Petroleum Geology Elsevier

Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China

Loading next page...
 
/lp/elsevier/geochemical-characteristics-of-tight-gas-and-gas-source-correlation-in-JVA00esQdm
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0264-8172
eISSN
1873-4073
D.O.I.
10.1016/j.marpetgeo.2016.10.022
Publisher site
See Article on Publisher Site

Abstract

The molecular composition, stable carbon and hydrogen isotopes and light hydrocarbons of the Upper Paleozoic tight gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. Tight gas in the Daniudi gas field displays a dryness coefficient (C1/C1–5) of 0.845–0.977 with generally positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of tight gas are dominated by methylcyclohexane and iso-alkanes, respectively. The identification of gas origin and gas-source correlation indicate that tight gas is coal-type gas, and the gases reservoired in the Lower Permian Shanxi Fm. (P1s) and Lower Shihezi Fm. (P1x) had a good affinity and were derived from the P1s coal-measure source rocks, whereas the gas reservoired in the Upper Carboniferous Taiyuan Fm. (C3t) was derived from the C3t coal-measure source rocks. The molecular and methane carbon isotopic fractionations of natural gas support that the P1x gas was derived from the P1s source rocks. The differences of geochemical characteristics of the C3t gas from different areas in the field suggest the effect of maturity difference of the source rocks rather than the diffusive migration, and the large-scale lateral migration of the C3t gas seems unlikely. Comparative study indicates that the differences of the geochemical characteristics of the P1s gases from the Yulin and Daniudi gas fields originated likely from the maturity difference of the in-situ source rocks, rather than the effect of large-scale lateral migration of the P1s gases.

Journal

Marine and Petroleum GeologyElsevier

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off