Generation and application of multivariate polynomial quadrature rules

Generation and application of multivariate polynomial quadrature rules The search for multivariate quadrature rules of minimal size with a specified polynomial accuracy has been the topic of many years of research. Finding such a rule allows accurate integration of moments, which play a central role in many aspects of scientific computing with complex models. The contribution of this paper is twofold. First, we provide novel mathematical analysis of the polynomial quadrature problem that provides a lower bound for the minimal possible number of nodes in a polynomial rule with specified accuracy. We give concrete but simplistic multivariate examples where a minimal quadrature rule can be designed that achieves this lower bound, along with situations that showcase when it is not possible to achieve this lower bound. Our second contribution is the formulation of an algorithm that is able to efficiently generate multivariate quadrature rules with positive weights on non-tensorial domains. Our tests show success of this procedure in up to 20 dimensions. We test our method on applications to dimension reduction and chemical kinetics problems, including comparisons against popular alternatives such as sparse grids, Monte Carlo and quasi Monte Carlo sequences, and Stroud rules. The quadrature rules computed in this paper outperform these alternatives in almost all scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Methods in Applied Mechanics and Engineering Elsevier

Generation and application of multivariate polynomial quadrature rules

Loading next page...
 
/lp/elsevier/generation-and-application-of-multivariate-polynomial-quadrature-rules-bxRuBhbqxY
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0045-7825
eISSN
1879-2138
D.O.I.
10.1016/j.cma.2018.04.009
Publisher site
See Article on Publisher Site

Abstract

The search for multivariate quadrature rules of minimal size with a specified polynomial accuracy has been the topic of many years of research. Finding such a rule allows accurate integration of moments, which play a central role in many aspects of scientific computing with complex models. The contribution of this paper is twofold. First, we provide novel mathematical analysis of the polynomial quadrature problem that provides a lower bound for the minimal possible number of nodes in a polynomial rule with specified accuracy. We give concrete but simplistic multivariate examples where a minimal quadrature rule can be designed that achieves this lower bound, along with situations that showcase when it is not possible to achieve this lower bound. Our second contribution is the formulation of an algorithm that is able to efficiently generate multivariate quadrature rules with positive weights on non-tensorial domains. Our tests show success of this procedure in up to 20 dimensions. We test our method on applications to dimension reduction and chemical kinetics problems, including comparisons against popular alternatives such as sparse grids, Monte Carlo and quasi Monte Carlo sequences, and Stroud rules. The quadrature rules computed in this paper outperform these alternatives in almost all scenarios.

Journal

Computer Methods in Applied Mechanics and EngineeringElsevier

Published: Aug 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off