Gd(Co1-xGax)2: Synthesis, crystal structures, and investigation of structural transformations and magnetic properties

Gd(Co1-xGax)2: Synthesis, crystal structures, and investigation of structural transformations and... Gd(Co1-xGax)2 (x = 0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1) phases were synthesized by arc melting the constituent elements and subsequent annealing. The samples were characterized by powder and single crystal X-ray diffraction, magnetic measurements, and electronic structure calculations. An interesting structural sequence was obtained: cubic MgCu2-type structure for x = 0 and 1/6; MgZn2-type structure for x = 1/3; orthorhombic SrMgSi-type structure for x = ½; orthorhombic CeCu2-type structure for x = 2/3; hexagonal AlB2-type structure for x = 5/6 and 1. Tight-binding linear-muffin-tin orbital (TB-LMTO) calculations were performed on GdCo2, GdCoGa, and GdGa2 to trace the origin of their structural transformations, which appear to be driven by the changes in the valence electron count (VEC). In addition, some conclusions of these fully stoichiometric compounds were obtained from the rigid band model. GdGa2 (x = 1) is antiferromagnetic, while the other ones are either ferrimagnetic or ferromagnetic. TC of Gd(Co1-xGax)2 decreases monotonically with the increasing Ga content, suggesting that promising room temperature (RT) magnetocaloric materials could be obtained between x = 1/6 and x = 1/3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Gd(Co1-xGax)2: Synthesis, crystal structures, and investigation of structural transformations and magnetic properties

Loading next page...
 
/lp/elsevier/gd-co1-xgax-2-synthesis-crystal-structures-and-investigation-of-Xvb1ngHZMj
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.05.009
Publisher site
See Article on Publisher Site

Abstract

Gd(Co1-xGax)2 (x = 0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1) phases were synthesized by arc melting the constituent elements and subsequent annealing. The samples were characterized by powder and single crystal X-ray diffraction, magnetic measurements, and electronic structure calculations. An interesting structural sequence was obtained: cubic MgCu2-type structure for x = 0 and 1/6; MgZn2-type structure for x = 1/3; orthorhombic SrMgSi-type structure for x = ½; orthorhombic CeCu2-type structure for x = 2/3; hexagonal AlB2-type structure for x = 5/6 and 1. Tight-binding linear-muffin-tin orbital (TB-LMTO) calculations were performed on GdCo2, GdCoGa, and GdGa2 to trace the origin of their structural transformations, which appear to be driven by the changes in the valence electron count (VEC). In addition, some conclusions of these fully stoichiometric compounds were obtained from the rigid band model. GdGa2 (x = 1) is antiferromagnetic, while the other ones are either ferrimagnetic or ferromagnetic. TC of Gd(Co1-xGax)2 decreases monotonically with the increasing Ga content, suggesting that promising room temperature (RT) magnetocaloric materials could be obtained between x = 1/6 and x = 1/3.

Journal

Journal of Solid State ChemistryElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off