GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators

GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators γ-Aminobutyric acid (GABA) is the major inhibitory transmitter controlling synaptic transmission and neuronal excitability. It is present in a high percentage of neurons in the central nervous system (CNS) and also present in the peripheral nervous system, and acts to maintain a balance between excitation and inhibition. GABA acts via three subclasses of receptors termed GABAA, GABAB, and GABAC. GABAA and GABAC receptors are ligand-gated ion channels, while GABAB receptors are G-protein coupled receptors. Each class of GABA receptor has distinct pharmacology and physiology. GABAA receptors are heteropentameric transmembrane protein complexes made up of α1-6, β1-3, γ1-3, δ, ε, θ, π subunits, giving rise to numerous allosteric binding sites and have thus attracted much attention targets for the treatment of conditions such as epilepsy, anxiety and sleep disorders. The development of ligands for these binding sites has also led to an improved understanding of the different physiological functions and pathological processes and offers the opportunity for the development of novel therapeutics. This review focuses on the medicinal chemistry aspects including drug design, structure–activity relationships (SAR), and mechanism of actions of GABA modulators, including non-benzodiazepine ligands at the benzodiazepine binding site and modulators acting at sites other than the high-affinity benzodiazepine binding site. Recent advances in this area their future applications and potential therapeutic effects are also highlighted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators

Loading next page...
 
/lp/elsevier/gaba-allosteric-modulators-an-overview-of-recent-developments-in-non-uO7EnFAumb
Publisher
Elsevier
Copyright
Copyright © 2019 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2019.03.043
Publisher site
See Article on Publisher Site

Abstract

γ-Aminobutyric acid (GABA) is the major inhibitory transmitter controlling synaptic transmission and neuronal excitability. It is present in a high percentage of neurons in the central nervous system (CNS) and also present in the peripheral nervous system, and acts to maintain a balance between excitation and inhibition. GABA acts via three subclasses of receptors termed GABAA, GABAB, and GABAC. GABAA and GABAC receptors are ligand-gated ion channels, while GABAB receptors are G-protein coupled receptors. Each class of GABA receptor has distinct pharmacology and physiology. GABAA receptors are heteropentameric transmembrane protein complexes made up of α1-6, β1-3, γ1-3, δ, ε, θ, π subunits, giving rise to numerous allosteric binding sites and have thus attracted much attention targets for the treatment of conditions such as epilepsy, anxiety and sleep disorders. The development of ligands for these binding sites has also led to an improved understanding of the different physiological functions and pathological processes and offers the opportunity for the development of novel therapeutics. This review focuses on the medicinal chemistry aspects including drug design, structure–activity relationships (SAR), and mechanism of actions of GABA modulators, including non-benzodiazepine ligands at the benzodiazepine binding site and modulators acting at sites other than the high-affinity benzodiazepine binding site. Recent advances in this area their future applications and potential therapeutic effects are also highlighted.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jun 1, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off