Future moisture loads for building facades in Sweden: Climate change and wind-driven rain

Future moisture loads for building facades in Sweden: Climate change and wind-driven rain This work investigates the prospective impacts of climate change on wind-driven rain (WDR) and walls through simulating the hygrothermal performance of rain screen of common vertical wall constructions for the climatic conditions of Gothenburg in Sweden. While a substantial amount of work has been done on the impact of climate change on the thermal performance of buildings, this paper studies its impact – through changes in rain, wind and other climatic parameters – on the amount of water which penetrates the outmost layer of ventilated façades. Importance of three uncertainty factors of the climate data are investigated: uncertainties from global climate models, emissions scenarios and spatial resolutions. Consistency of the results is examined by modelling walls with different materials and sizes, as well as using two mathematical approaches for WDR modelling. Sensitivity of the wall simulations to the wind data is assessed by using synthetic climate with sole wind data. According to the results, higher amounts of moisture will accumulate in walls in the future; climate uncertainties can cause variations up to 13% in the calculated 30-year average of water content and 28% in its standard deviation. Using sole wind data can augment uncertainties with up to 10% in WDR calculations, however it is possible to neglect changes in future wind data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Future moisture loads for building facades in Sweden: Climate change and wind-driven rain

Loading next page...
 
/lp/elsevier/future-moisture-loads-for-building-facades-in-sweden-climate-change-V5Y5vyZpvA
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2015.07.012
Publisher site
See Article on Publisher Site

Abstract

This work investigates the prospective impacts of climate change on wind-driven rain (WDR) and walls through simulating the hygrothermal performance of rain screen of common vertical wall constructions for the climatic conditions of Gothenburg in Sweden. While a substantial amount of work has been done on the impact of climate change on the thermal performance of buildings, this paper studies its impact – through changes in rain, wind and other climatic parameters – on the amount of water which penetrates the outmost layer of ventilated façades. Importance of three uncertainty factors of the climate data are investigated: uncertainties from global climate models, emissions scenarios and spatial resolutions. Consistency of the results is examined by modelling walls with different materials and sizes, as well as using two mathematical approaches for WDR modelling. Sensitivity of the wall simulations to the wind data is assessed by using synthetic climate with sole wind data. According to the results, higher amounts of moisture will accumulate in walls in the future; climate uncertainties can cause variations up to 13% in the calculated 30-year average of water content and 28% in its standard deviation. Using sole wind data can augment uncertainties with up to 10% in WDR calculations, however it is possible to neglect changes in future wind data.

Journal

Building and EnvironmentElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off