Functional importance of Glutamate-445 and Glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli

Functional importance of Glutamate-445 and Glutamate-99 in proton-coupled electron transfer... The recent X-ray structure of the cytochrome bd respiratory oxygen reductase showed that two of the three heme components, heme d and heme b595, have glutamic acid as an axial ligand. No other native heme proteins are known to have glutamic acid axial ligands. In this work, site-directed mutagenesis is used to probe the roles of these glutamic acids, E445 and E99 in the E. coli enzyme. It is concluded that neither glutamate is a strong ligand to the heme Fe and they are not the major determinates of heme binding to the protein. Although very important, neither glutamate is absolutely essential for catalytic function. The close interactions between the three hemes in cyt bd result in highly cooperative properties. For example, mutation of E445, which is near heme d, has its greatest effects on the properties of heme b595 and heme b558. It is concluded that 1) O2 binds to the hydrophilic side of heme d and displaces E445; 2) E445 forms a salt bridge with R448 within the O2 binding pocket, and both residues play a role to stabilize oxygenated states of heme d during catalysis; 3) E445 and E99 are each protonated accompanying electron transfer to heme d and heme b595, respectively; 4) All protons used to generate water within the heme d active site come from the cytoplasm and are delivered through a channel that must include internal water molecules to assist proton transfer: [cytoplasm] → E107 → E99 (heme b595) → E445 (heme d) → oxygenated heme d. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Bioenergetics Elsevier

Functional importance of Glutamate-445 and Glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli

Loading next page...
 
/lp/elsevier/functional-importance-of-glutamate-445-and-glutamate-99-in-proton-ms5Xc7i07t
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0005-2728
D.O.I.
10.1016/j.bbabio.2018.04.012
Publisher site
See Article on Publisher Site

Abstract

The recent X-ray structure of the cytochrome bd respiratory oxygen reductase showed that two of the three heme components, heme d and heme b595, have glutamic acid as an axial ligand. No other native heme proteins are known to have glutamic acid axial ligands. In this work, site-directed mutagenesis is used to probe the roles of these glutamic acids, E445 and E99 in the E. coli enzyme. It is concluded that neither glutamate is a strong ligand to the heme Fe and they are not the major determinates of heme binding to the protein. Although very important, neither glutamate is absolutely essential for catalytic function. The close interactions between the three hemes in cyt bd result in highly cooperative properties. For example, mutation of E445, which is near heme d, has its greatest effects on the properties of heme b595 and heme b558. It is concluded that 1) O2 binds to the hydrophilic side of heme d and displaces E445; 2) E445 forms a salt bridge with R448 within the O2 binding pocket, and both residues play a role to stabilize oxygenated states of heme d during catalysis; 3) E445 and E99 are each protonated accompanying electron transfer to heme d and heme b595, respectively; 4) All protons used to generate water within the heme d active site come from the cytoplasm and are delivered through a channel that must include internal water molecules to assist proton transfer: [cytoplasm] → E107 → E99 (heme b595) → E445 (heme d) → oxygenated heme d.

Journal

Biochimica et Biophysica Acta (BBA) - BioenergeticsElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off