Function of Neurolin (DM-GRASP/SC-1) in Guidance of Motor Axons during Zebrafish Development

Function of Neurolin (DM-GRASP/SC-1) in Guidance of Motor Axons during Zebrafish Development Neurolin (zf DM-GRASP), a transmembrane protein with five extracellular immunoglobulin domains, is expressed by secondary but not primary motoneurons during zebrafish development. The spatiotemporally restricted expression pattern suggests that Neurolin plays a role in motor axon growth and guidance. To test this hypothesis, we injected zebrafish embryos with function-blocking Neurolin antibodies. In injected embryos, secondary motor axons form a broadened bundle along the common path and ectopic branches leave the common path at right angles. Moreover, the formation of the ventral and the rostral projection of secondary motor axons is inhibited during the second day of development. Pathfinding errors, resulting in secondary motor axons growing through ectopic regions of the somites, occur along the common path and in the dorsal and rostral projection. Our data are compatible with the view that Neurolin is involved in the recognition of guidance cues and acts as a receptor on secondary motor axons. Consistent with this idea is the binding pattern of a soluble Neurolin-Fc construct showing that putative ligands are distributed along the common path, the ventral projection, and in the area where the rostral projection develops. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Developmental Biology Elsevier

Function of Neurolin (DM-GRASP/SC-1) in Guidance of Motor Axons during Zebrafish Development

Loading next page...
 
/lp/elsevier/function-of-neurolin-dm-grasp-sc-1-in-guidance-of-motor-axons-during-ghpL1Yk7g2
Publisher
Elsevier
Copyright
Copyright © 2001 Academic Press
ISSN
0012-1606
eISSN
1095-564X
D.O.I.
10.1006/dbio.2001.0278
Publisher site
See Article on Publisher Site

Abstract

Neurolin (zf DM-GRASP), a transmembrane protein with five extracellular immunoglobulin domains, is expressed by secondary but not primary motoneurons during zebrafish development. The spatiotemporally restricted expression pattern suggests that Neurolin plays a role in motor axon growth and guidance. To test this hypothesis, we injected zebrafish embryos with function-blocking Neurolin antibodies. In injected embryos, secondary motor axons form a broadened bundle along the common path and ectopic branches leave the common path at right angles. Moreover, the formation of the ventral and the rostral projection of secondary motor axons is inhibited during the second day of development. Pathfinding errors, resulting in secondary motor axons growing through ectopic regions of the somites, occur along the common path and in the dorsal and rostral projection. Our data are compatible with the view that Neurolin is involved in the recognition of guidance cues and acts as a receptor on secondary motor axons. Consistent with this idea is the binding pattern of a soluble Neurolin-Fc construct showing that putative ligands are distributed along the common path, the ventral projection, and in the area where the rostral projection develops.

Journal

Developmental BiologyElsevier

Published: Jul 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off