FTIR study of ageing of γ-irradiated biopharmaceutical EVA based film

FTIR study of ageing of γ-irradiated biopharmaceutical EVA based film In the biopharmaceutical and biotechnological industries, disposable plastic bags are used to replace stainless steel vessels. A single-use bag is made up of a film, very often a multilayer structure, which provides good sealability of the contact layer, robustness and barrier to gas. Ethylene vinyl acetate (EVA) is one of the materials constitutive of this multilayer structure. Because these single-use plastic bags have to be sterile upon delivery, they are irradiated at doses between 25 and 45 kGy. The present work aims to investigate the effects of γ-irradiation on the surface of the multilayer film by Fourier Transform Infrared (FTIR) spectroscopy. Optical spectroscopy techniques are of great interest for chemical analysis and are used to obtain information on the composition of materials, in our present case polymers. The chemical changes are monitored over time (up to 12 months) after γ-irradiation (up to 270 kGy) using FTIR to study the composition and stability of the film. The chemometric method called Principal Component Analysis (PCA) is used to highlight the changes in shift or intensity in the oxidation zone and in the unsaturated group zone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Degradation and Stability Elsevier

FTIR study of ageing of γ-irradiated biopharmaceutical EVA based film

Loading next page...
 
/lp/elsevier/ftir-study-of-ageing-of-irradiated-biopharmaceutical-eva-based-film-SLucdssjoE
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0141-3910
D.O.I.
10.1016/j.polymdegradstab.2016.03.040
Publisher site
See Article on Publisher Site

Abstract

In the biopharmaceutical and biotechnological industries, disposable plastic bags are used to replace stainless steel vessels. A single-use bag is made up of a film, very often a multilayer structure, which provides good sealability of the contact layer, robustness and barrier to gas. Ethylene vinyl acetate (EVA) is one of the materials constitutive of this multilayer structure. Because these single-use plastic bags have to be sterile upon delivery, they are irradiated at doses between 25 and 45 kGy. The present work aims to investigate the effects of γ-irradiation on the surface of the multilayer film by Fourier Transform Infrared (FTIR) spectroscopy. Optical spectroscopy techniques are of great interest for chemical analysis and are used to obtain information on the composition of materials, in our present case polymers. The chemical changes are monitored over time (up to 12 months) after γ-irradiation (up to 270 kGy) using FTIR to study the composition and stability of the film. The chemometric method called Principal Component Analysis (PCA) is used to highlight the changes in shift or intensity in the oxidation zone and in the unsaturated group zone.

Journal

Polymer Degradation and StabilityElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off