Friction characteristics of polymers applicable to small-scale devices

Friction characteristics of polymers applicable to small-scale devices A review of the critical features of a published micro-tribometer design, which was intended to improve on the dynamic response of typical commercial instruments, leads to its use with a modified technique. Data post-processing is introduced to partially compensate for some potential systematic errors. This approach is demonstrated by a preliminary study of the coefficient of friction (CoF) in sub-mm length reciprocating sliding motion for samples of polytetrafluoroethylene (PTFE) and an R11 acrylic formulation made by micro-stereo-lithography, with an SiO2-coated silicon wafer used as a control sample. Testing covered normal loads in the region of 10 mN–60 mN, at scan frequencies up to 9 Hz, corresponding to sliding speeds in the broad region of 1 mm s−1. While the control samples closely adhered to Amonton's laws over all the test parameter ranges, the CoFs of the two polymers showed contrasting patterns of dependence on sliding speed and repetition rate. Such results have implications for how polymers might be used effectively in future designs for small mechanical systems. They indicate a clear need for further development of the testing methods and large-scale studies of tribological behaviour and its underlying mechanisms under the specified micro-scale conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology International Elsevier

Friction characteristics of polymers applicable to small-scale devices

Loading next page...
 
/lp/elsevier/friction-characteristics-of-polymers-applicable-to-small-scale-devices-5DmzbBcmfL
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0301-679X
eISSN
1879-2464
D.O.I.
10.1016/j.triboint.2017.11.036
Publisher site
See Article on Publisher Site

Abstract

A review of the critical features of a published micro-tribometer design, which was intended to improve on the dynamic response of typical commercial instruments, leads to its use with a modified technique. Data post-processing is introduced to partially compensate for some potential systematic errors. This approach is demonstrated by a preliminary study of the coefficient of friction (CoF) in sub-mm length reciprocating sliding motion for samples of polytetrafluoroethylene (PTFE) and an R11 acrylic formulation made by micro-stereo-lithography, with an SiO2-coated silicon wafer used as a control sample. Testing covered normal loads in the region of 10 mN–60 mN, at scan frequencies up to 9 Hz, corresponding to sliding speeds in the broad region of 1 mm s−1. While the control samples closely adhered to Amonton's laws over all the test parameter ranges, the CoFs of the two polymers showed contrasting patterns of dependence on sliding speed and repetition rate. Such results have implications for how polymers might be used effectively in future designs for small mechanical systems. They indicate a clear need for further development of the testing methods and large-scale studies of tribological behaviour and its underlying mechanisms under the specified micro-scale conditions.

Journal

Tribology InternationalElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off