Friction and wear properties in dry, water- and oil-lubricated DLC against alumina and DLC against steel contacts

Friction and wear properties in dry, water- and oil-lubricated DLC against alumina and DLC... Diamond-like carbon (DLC) films can be divided into two major categories according to their hydrogen content. These categories have similarities in tribological performance, but the films also behave in a different manner in different tribological conditions. The results of amorphous hydrogenated carbon films (a-C:H) and hydrogen-free hard carbon films (a-C) are reported in this study. The a-C:H films were deposited using the radio frequency (rf) plasma technique, and the hydrogen-free hard carbon films using pulsed vacuum arc. The coatings were characterized and investigated with respect to their tribological performance in dry (50% RH), water-lubricated and oil-lubricated slow sliding conditions (0.004 m s −1 ). The a-C and a-C:H films had a low friction coefficient in dry sliding conditions (0.15 to 0.22), which was further decreased by 10–40% under boundary lubrication. The a-C:H(Ti) films exhibited good self-lubricating properties (0.10) in dry sliding conditions and the a-C films had the lowest friction coefficient in water- (0.03) and oil-lubricated (0.08) conditions. The hydrogen-free hard carbon films showed excellent wear resistance in dry, water- and oil-lubricated conditions, but hydrogenated a-C:H films suffered from severe wear in aqueous conditions. The performance of a-C:H films could be improved by titanium alloying. In dry sliding conditions, the tribolayer formation of DLC films influenced the friction and wear performance, but in oil-lubricated conditions boundary lubrication layers were formed, which governed the tribological mechanisms in the contact. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Friction and wear properties in dry, water- and oil-lubricated DLC against alumina and DLC against steel contacts

Wear, Volume 222 (2) – Nov 1, 1998

Loading next page...
 
/lp/elsevier/friction-and-wear-properties-in-dry-water-and-oil-lubricated-dlc-9jURn5QCMg
Publisher
Elsevier
Copyright
Copyright © 1998 Elsevier Ltd
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/S0043-1648(98)00314-7
Publisher site
See Article on Publisher Site

Abstract

Diamond-like carbon (DLC) films can be divided into two major categories according to their hydrogen content. These categories have similarities in tribological performance, but the films also behave in a different manner in different tribological conditions. The results of amorphous hydrogenated carbon films (a-C:H) and hydrogen-free hard carbon films (a-C) are reported in this study. The a-C:H films were deposited using the radio frequency (rf) plasma technique, and the hydrogen-free hard carbon films using pulsed vacuum arc. The coatings were characterized and investigated with respect to their tribological performance in dry (50% RH), water-lubricated and oil-lubricated slow sliding conditions (0.004 m s −1 ). The a-C and a-C:H films had a low friction coefficient in dry sliding conditions (0.15 to 0.22), which was further decreased by 10–40% under boundary lubrication. The a-C:H(Ti) films exhibited good self-lubricating properties (0.10) in dry sliding conditions and the a-C films had the lowest friction coefficient in water- (0.03) and oil-lubricated (0.08) conditions. The hydrogen-free hard carbon films showed excellent wear resistance in dry, water- and oil-lubricated conditions, but hydrogenated a-C:H films suffered from severe wear in aqueous conditions. The performance of a-C:H films could be improved by titanium alloying. In dry sliding conditions, the tribolayer formation of DLC films influenced the friction and wear performance, but in oil-lubricated conditions boundary lubrication layers were formed, which governed the tribological mechanisms in the contact.

Journal

WearElsevier

Published: Nov 1, 1998

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off