Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method

Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric... The free vibration analysis of a circular plate made up of a porous material integrated by piezoelectric actuator patches has been studied. The plate is assumed to be thin and its shear deformations have been neglected. The porous material properties vary through the plate thickness according to some given functions. Using Hamilton's variational principle and the classical plate theory (CPT) the governing motion equations have been obtained. Simple and clamped supports have been considered for the boundary conditions. The differential quadrature method (DQM) has been used for the discretizations required for numerical analysis. The effect of some parameters such as thickness ratio, porosity, piezoelectric actuators, variation of piezoelectric actuators-to-porous plate thickness ratio, pores distribution and pores compressibility on the natural frequency, radial and circumferential stresses has been illustrated. The results have been compared with the similar ones in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thin-Walled Structures Elsevier

Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method

Loading next page...
 
/lp/elsevier/free-vibration-analysis-of-saturated-porous-fg-circular-plates-T96Kwgdnkr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8231
eISSN
1879-3223
D.O.I.
10.1016/j.tws.2018.01.007
Publisher site
See Article on Publisher Site

Abstract

The free vibration analysis of a circular plate made up of a porous material integrated by piezoelectric actuator patches has been studied. The plate is assumed to be thin and its shear deformations have been neglected. The porous material properties vary through the plate thickness according to some given functions. Using Hamilton's variational principle and the classical plate theory (CPT) the governing motion equations have been obtained. Simple and clamped supports have been considered for the boundary conditions. The differential quadrature method (DQM) has been used for the discretizations required for numerical analysis. The effect of some parameters such as thickness ratio, porosity, piezoelectric actuators, variation of piezoelectric actuators-to-porous plate thickness ratio, pores distribution and pores compressibility on the natural frequency, radial and circumferential stresses has been illustrated. The results have been compared with the similar ones in the literature.

Journal

Thin-Walled StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial