Formation and characterization of thiol-modified fibrillated whey protein isolate solution with enhanced functionalities

Formation and characterization of thiol-modified fibrillated whey protein isolate solution with... The effect of thiolation using propanethiol on the functionalities of fibrillated whey protein isolate (WPI) solution at different pH values was studied. Fibrillated WPI solutions were thiolated at different molar ratios of propanethiol:carboxyl group (0.5:1, 1:1, 2:1, 3:1, 4:1) and the highest esterification extent ratio was obtained at 4:1 (pH 9). We also found that the thiolation process improved the foaming capacity and foam stability. TEM micrographs evidenced aggregation of thiol-modified fibrillated WPI. A network of shortened fibrils attached to each other was formed upon thiolation, suggesting good physical interaction. This was coherent with the increment of zeta potential values, indicating a greater repulsion force to retard fibrils aggregation. Thiolation enhanced emulsifying stability index of thiol-modified fibrillated WPI solution (pH 8) and diminished its susceptibility to pH changes. This has broadened the potential application of fibrils as food ingredients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Formation and characterization of thiol-modified fibrillated whey protein isolate solution with enhanced functionalities

Loading next page...
 
/lp/elsevier/formation-and-characterization-of-thiol-modified-fibrillated-whey-15kiHsvVOc
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2017.07.015
Publisher site
See Article on Publisher Site

Abstract

The effect of thiolation using propanethiol on the functionalities of fibrillated whey protein isolate (WPI) solution at different pH values was studied. Fibrillated WPI solutions were thiolated at different molar ratios of propanethiol:carboxyl group (0.5:1, 1:1, 2:1, 3:1, 4:1) and the highest esterification extent ratio was obtained at 4:1 (pH 9). We also found that the thiolation process improved the foaming capacity and foam stability. TEM micrographs evidenced aggregation of thiol-modified fibrillated WPI. A network of shortened fibrils attached to each other was formed upon thiolation, suggesting good physical interaction. This was coherent with the increment of zeta potential values, indicating a greater repulsion force to retard fibrils aggregation. Thiolation enhanced emulsifying stability index of thiol-modified fibrillated WPI solution (pH 8) and diminished its susceptibility to pH changes. This has broadened the potential application of fibrils as food ingredients.

Journal

Journal of Food EngineeringElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off