Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats

Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats Global cerebral ischemia leads to selective neuronal damage in the CA1 sector of the hippocampus and in the dorsolateral striatum. In addition, it results in deficits in spatial learning and memory as shown by an increase in escape latency and swim distance during the escape trials and a reduction of time spent in the quadrant of the former platform position during the probe trial of the water maze. Flupirtine is a non-opioid, centrally acting analgesic which has been shown to be neuroprotective against N -methyl- d -aspartate (NMDA)-mediated toxicity in vitro. The purpose of the present study was to investigate the potential protective effect of flupirtine in vivo with both behavioural and histological measures of global cerebral ischemia. Global ischemia was induced by four-vessel-occlusion (4VO) for 20 min in rats. Flupirtine was administered at a dose of 5 mg/kg i.p. either 20 min before and 50 min after occlusion (pre-treatment) or directly and 70 min after occlusion (post-treatment). 1 week after surgery, spatial learning and memory was tested in the Morris water maze. Pre-treatment with flupirtine reduced the increase in escape latency and in swim distance induced by 4VO. It also diminished the deficit in spatial memory as revealed by an increase in time spent in the quadrant of the former platform position during the probe trial which was reduced by 4VO. Post-treatment with flupirtine had no effect on the deficits in spatial learning and memory induced by 4VO. Neuronal damage in the CA1 sector of the hippocampus and in the striatum produced by 4VO was significantly attenuated with pre-treatment of flupirtine whereas post-treatment did not affect this neuronal damage. The present data demonstrate that pre-treatment with flupirtine exerts a protective effect on hippocampal and striatal neuronal damage and on deficits in spatial learning induced by 4VO. © 1997 Elsevier Science B.V. All rights reserved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats

Brain Research, Volume 754 (1) – Apr 18, 1997

Loading next page...
 
/lp/elsevier/flupirtine-reduces-functional-deficits-and-neuronal-damage-after-fjapBitsjV
Publisher
Elsevier
Copyright
Copyright © 1997 Elsevier Science B.V.
ISSN
0006-8993
DOI
10.1016/S0006-8993(97)00096-6
Publisher site
See Article on Publisher Site

Abstract

Global cerebral ischemia leads to selective neuronal damage in the CA1 sector of the hippocampus and in the dorsolateral striatum. In addition, it results in deficits in spatial learning and memory as shown by an increase in escape latency and swim distance during the escape trials and a reduction of time spent in the quadrant of the former platform position during the probe trial of the water maze. Flupirtine is a non-opioid, centrally acting analgesic which has been shown to be neuroprotective against N -methyl- d -aspartate (NMDA)-mediated toxicity in vitro. The purpose of the present study was to investigate the potential protective effect of flupirtine in vivo with both behavioural and histological measures of global cerebral ischemia. Global ischemia was induced by four-vessel-occlusion (4VO) for 20 min in rats. Flupirtine was administered at a dose of 5 mg/kg i.p. either 20 min before and 50 min after occlusion (pre-treatment) or directly and 70 min after occlusion (post-treatment). 1 week after surgery, spatial learning and memory was tested in the Morris water maze. Pre-treatment with flupirtine reduced the increase in escape latency and in swim distance induced by 4VO. It also diminished the deficit in spatial memory as revealed by an increase in time spent in the quadrant of the former platform position during the probe trial which was reduced by 4VO. Post-treatment with flupirtine had no effect on the deficits in spatial learning and memory induced by 4VO. Neuronal damage in the CA1 sector of the hippocampus and in the striatum produced by 4VO was significantly attenuated with pre-treatment of flupirtine whereas post-treatment did not affect this neuronal damage. The present data demonstrate that pre-treatment with flupirtine exerts a protective effect on hippocampal and striatal neuronal damage and on deficits in spatial learning induced by 4VO. © 1997 Elsevier Science B.V. All rights reserved.

Journal

Brain ResearchElsevier

Published: Apr 18, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off