Fluorescence quantum yield determination of molecules in liquids by thermally driven conical diffraction

Fluorescence quantum yield determination of molecules in liquids by thermally driven conical... We report on a method to determine fluorescence quantum yield (η) of molecules in solution based on the observation of conical diffraction (CD) patterns induced by thermally driven self-phase modulation (SPM). In this approach, the central part of a laser beam is acquired as a function of its power after passing through the sample. If the thermal properties of the solvent are known, one can directly obtain η by measuring the sample optical absorption and the rings produced by CD. Otherwise, if the thermal properties of the sample are unknown, an additional measurement with the same solvent containing nonfluorescent molecules (blue-black ink, for instance) for thermal SPM generation is also needed. In this case, besides determination of η, one can also find the thermal conductivity (K) of the unknown solvent provided that the thermo-optic coefficient (dn/dT) is independently measured. K values obtained with this approach are in good agreement with the literature. CD technique was applied in rhodamine 6 G and a chromophore derivative of vitamin B6 in different solvents. Therefore, the present method may serve as a low-cost optical approach for η determination in liquid samples and for K measurements in unknown solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Fluorescence quantum yield determination of molecules in liquids by thermally driven conical diffraction

Loading next page...
 
/lp/elsevier/fluorescence-quantum-yield-determination-of-molecules-in-liquids-by-RlnNIpBzw7
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2018.01.027
Publisher site
See Article on Publisher Site

Abstract

We report on a method to determine fluorescence quantum yield (η) of molecules in solution based on the observation of conical diffraction (CD) patterns induced by thermally driven self-phase modulation (SPM). In this approach, the central part of a laser beam is acquired as a function of its power after passing through the sample. If the thermal properties of the solvent are known, one can directly obtain η by measuring the sample optical absorption and the rings produced by CD. Otherwise, if the thermal properties of the sample are unknown, an additional measurement with the same solvent containing nonfluorescent molecules (blue-black ink, for instance) for thermal SPM generation is also needed. In this case, besides determination of η, one can also find the thermal conductivity (K) of the unknown solvent provided that the thermo-optic coefficient (dn/dT) is independently measured. K values obtained with this approach are in good agreement with the literature. CD technique was applied in rhodamine 6 G and a chromophore derivative of vitamin B6 in different solvents. Therefore, the present method may serve as a low-cost optical approach for η determination in liquid samples and for K measurements in unknown solutions.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off