Fluorescence quantum yield determination of molecules in liquids by thermally driven conical diffraction

Fluorescence quantum yield determination of molecules in liquids by thermally driven conical... We report on a method to determine fluorescence quantum yield (η) of molecules in solution based on the observation of conical diffraction (CD) patterns induced by thermally driven self-phase modulation (SPM). In this approach, the central part of a laser beam is acquired as a function of its power after passing through the sample. If the thermal properties of the solvent are known, one can directly obtain η by measuring the sample optical absorption and the rings produced by CD. Otherwise, if the thermal properties of the sample are unknown, an additional measurement with the same solvent containing nonfluorescent molecules (blue-black ink, for instance) for thermal SPM generation is also needed. In this case, besides determination of η, one can also find the thermal conductivity (K) of the unknown solvent provided that the thermo-optic coefficient (dn/dT) is independently measured. K values obtained with this approach are in good agreement with the literature. CD technique was applied in rhodamine 6 G and a chromophore derivative of vitamin B6 in different solvents. Therefore, the present method may serve as a low-cost optical approach for η determination in liquid samples and for K measurements in unknown solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Fluorescence quantum yield determination of molecules in liquids by thermally driven conical diffraction

Loading next page...
 
/lp/elsevier/fluorescence-quantum-yield-determination-of-molecules-in-liquids-by-RlnNIpBzw7
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2018.01.027
Publisher site
See Article on Publisher Site

Abstract

We report on a method to determine fluorescence quantum yield (η) of molecules in solution based on the observation of conical diffraction (CD) patterns induced by thermally driven self-phase modulation (SPM). In this approach, the central part of a laser beam is acquired as a function of its power after passing through the sample. If the thermal properties of the solvent are known, one can directly obtain η by measuring the sample optical absorption and the rings produced by CD. Otherwise, if the thermal properties of the sample are unknown, an additional measurement with the same solvent containing nonfluorescent molecules (blue-black ink, for instance) for thermal SPM generation is also needed. In this case, besides determination of η, one can also find the thermal conductivity (K) of the unknown solvent provided that the thermo-optic coefficient (dn/dT) is independently measured. K values obtained with this approach are in good agreement with the literature. CD technique was applied in rhodamine 6 G and a chromophore derivative of vitamin B6 in different solvents. Therefore, the present method may serve as a low-cost optical approach for η determination in liquid samples and for K measurements in unknown solutions.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off