Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV)

Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV) High solid anaerobic digestion (HSAD) is a promising anaerobic digestion technology. Homogenization and mixing mechanism are essential for HSAD's performance, but relative knowledge still remains poor. In order to investigate HSAD's mixing behavior, a novel flow field measuring approach was proposed as following. Firstly, laponite suspension was selected as the model fluid of HSAD digestate, because the rheological properties and material structure they displayed were highly similar. Then, water and polyacrylamide (PAAm) solution were chosen as basic reference fluid and another non-Newtonian fluid respectively. Flow fields of the three fluids under different rotation speeds were measured via Particle Image Velocimetry (PIV). The evolution of working fluids did induce consecutively the significant flow and mixing behavior of HSAD, because their rheological properties and complexity were getting progressively closer to the real HSAD digestate. Results indicated that the flow field of simulated HSAD fluid was quite different from those of water and PAAm solution, i.e. only the fluid around the impeller could be mixed in HSAD. Besides, increasing rotation speed could not significantly enhance the mixing area of HSAD. Thus, multilayer impellers arranged abreast were recommended for HSAD's mixing. Considering that HSAD's flow field had never been measured before, this study proposed a novel flow field measuring method for such opaque non-Newtonian fluid for the first time. The visualization of HSAD's complex hydrodynamic conditions was also firstly achieved in this study, and thus could further help improve the homogenization of HSAD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV)

Loading next page...
 
/lp/elsevier/flow-field-investigation-of-high-solid-anaerobic-digestion-by-particle-0HTNUTVjh7
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.111
Publisher site
See Article on Publisher Site

Abstract

High solid anaerobic digestion (HSAD) is a promising anaerobic digestion technology. Homogenization and mixing mechanism are essential for HSAD's performance, but relative knowledge still remains poor. In order to investigate HSAD's mixing behavior, a novel flow field measuring approach was proposed as following. Firstly, laponite suspension was selected as the model fluid of HSAD digestate, because the rheological properties and material structure they displayed were highly similar. Then, water and polyacrylamide (PAAm) solution were chosen as basic reference fluid and another non-Newtonian fluid respectively. Flow fields of the three fluids under different rotation speeds were measured via Particle Image Velocimetry (PIV). The evolution of working fluids did induce consecutively the significant flow and mixing behavior of HSAD, because their rheological properties and complexity were getting progressively closer to the real HSAD digestate. Results indicated that the flow field of simulated HSAD fluid was quite different from those of water and PAAm solution, i.e. only the fluid around the impeller could be mixed in HSAD. Besides, increasing rotation speed could not significantly enhance the mixing area of HSAD. Thus, multilayer impellers arranged abreast were recommended for HSAD's mixing. Considering that HSAD's flow field had never been measured before, this study proposed a novel flow field measuring method for such opaque non-Newtonian fluid for the first time. The visualization of HSAD's complex hydrodynamic conditions was also firstly achieved in this study, and thus could further help improve the homogenization of HSAD.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off