Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL

Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic... A continuing problem in hydrology is the estimation of peak discharges for design purposes on catchments with only limited available data. A promising and elegant approach to this problem is the derived flood frequency curve pioneered by Eagleson (1972, WaterResour. Res. , 8(4): 878–898). A number of studies using this approach have been published over the last 20 years but only a few have compared the predicted curves with observations. One exception used a simple stochastic rainfall model to drive a version of TOPMODEL (Beven, 1987, Earth Surf Processes Lardforms , 12: 69–82). The present study describes a new version of the stochastic rainfall simulator previously used with TOPMODEL and its application on three small catchments (1.87, 4.75 and 25.81 km2) in the Jizera Mountains in the Czech Republic. The rainfall model differentiates between high and low intensity events. The resulting rainfall statistics were checked by comparisons with measured data. The flood frequency curves predicted by the combined model were constrained by the regional estimates or a measured series for short return periods and used to predict longer return period flood magnitudes. Only one TOPMODEL parameter has to be adjusted—an effective average transmissivity. For the two smaller catchments also a rainfall parameter has to be adjusted depending on the size of the catchment. It is shown that the random sequence of rainstorms can have a significant effect on the predicted 100 year return period event, even for 1000 year simulations and without allowing for uncertainty in the rainfall model parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL

Journal of Hydrology, Volume 195 (1) – Aug 1, 1997

Loading next page...
 
/lp/elsevier/flood-frequency-prediction-for-data-limited-catchments-in-the-czech-0qlZ06rY4M
Publisher
Elsevier
Copyright
Copyright © 1997 Elsevier Ltd
ISSN
0022-1694
eISSN
1879-2707
DOI
10.1016/S0022-1694(96)03238-6
Publisher site
See Article on Publisher Site

Abstract

A continuing problem in hydrology is the estimation of peak discharges for design purposes on catchments with only limited available data. A promising and elegant approach to this problem is the derived flood frequency curve pioneered by Eagleson (1972, WaterResour. Res. , 8(4): 878–898). A number of studies using this approach have been published over the last 20 years but only a few have compared the predicted curves with observations. One exception used a simple stochastic rainfall model to drive a version of TOPMODEL (Beven, 1987, Earth Surf Processes Lardforms , 12: 69–82). The present study describes a new version of the stochastic rainfall simulator previously used with TOPMODEL and its application on three small catchments (1.87, 4.75 and 25.81 km2) in the Jizera Mountains in the Czech Republic. The rainfall model differentiates between high and low intensity events. The resulting rainfall statistics were checked by comparisons with measured data. The flood frequency curves predicted by the combined model were constrained by the regional estimates or a measured series for short return periods and used to predict longer return period flood magnitudes. Only one TOPMODEL parameter has to be adjusted—an effective average transmissivity. For the two smaller catchments also a rainfall parameter has to be adjusted depending on the size of the catchment. It is shown that the random sequence of rainstorms can have a significant effect on the predicted 100 year return period event, even for 1000 year simulations and without allowing for uncertainty in the rainfall model parameters.

Journal

Journal of HydrologyElsevier

Published: Aug 1, 1997

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off