Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI

Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI 4D Flow MRI has been used to quantify normal and deranged left ventricular blood flow characteristics on the basis of functionally distinct flow components. However, the application of this technique to the atria is challenging due to the presence of continuous inflow. This continuous inflow necessitates plane-based emission of particle traces from the inlet veins, leading to particles that represents different amounts of blood, and related quantification errors. The purpose of this study was to develop a novel fixed-volume approach for particle tracing and employ this method to develop quantitative analysis of 4D blood flow characteristics in the left atrium. 4D Flow MRI data were acquired during free-breathing using a navigator-gated gradient-echo sequence in three volunteers at 1.5T. Fixed-volume particle traces emitted from the pulmonary veins were used to visualize left atrial blood flow and to quantitatively separate the flow into two functionally distinct flow components: Direct flow=particle traces that enter and leave the atrium in one heartbeat, Retained flow=particle traces that enter the atrium and remains there for one cardiac cycle. Flow visualization based on fixed-volume traces revealed that, beginning in early ventricular systole, flow enters the atrium and engages with residual blood volume to form a vortex. In early diastole during early ventricular filling, the organized vortical flow is extinguished, followed by formation of a second transient atrial vortex. Finally, in late diastole during atrial contraction, a second acceleration of blood into the ventricle is seen. The direct and retained left atrial flow components were between 44 and 57% and 43–56% of the stroke volume, respectively. In conclusion, fixed-volume particle tracing permits separation of left atrial blood flow into different components based on the transit of blood through the atrium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Magnetic Resonance Imaging Elsevier

Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI

Loading next page...
 
/lp/elsevier/fixed-volume-particle-trace-emission-for-the-analysis-of-left-atrial-xCnsf8j2Y8
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0730-725X
D.O.I.
10.1016/j.mri.2017.12.008
Publisher site
See Article on Publisher Site

Abstract

4D Flow MRI has been used to quantify normal and deranged left ventricular blood flow characteristics on the basis of functionally distinct flow components. However, the application of this technique to the atria is challenging due to the presence of continuous inflow. This continuous inflow necessitates plane-based emission of particle traces from the inlet veins, leading to particles that represents different amounts of blood, and related quantification errors. The purpose of this study was to develop a novel fixed-volume approach for particle tracing and employ this method to develop quantitative analysis of 4D blood flow characteristics in the left atrium. 4D Flow MRI data were acquired during free-breathing using a navigator-gated gradient-echo sequence in three volunteers at 1.5T. Fixed-volume particle traces emitted from the pulmonary veins were used to visualize left atrial blood flow and to quantitatively separate the flow into two functionally distinct flow components: Direct flow=particle traces that enter and leave the atrium in one heartbeat, Retained flow=particle traces that enter the atrium and remains there for one cardiac cycle. Flow visualization based on fixed-volume traces revealed that, beginning in early ventricular systole, flow enters the atrium and engages with residual blood volume to form a vortex. In early diastole during early ventricular filling, the organized vortical flow is extinguished, followed by formation of a second transient atrial vortex. Finally, in late diastole during atrial contraction, a second acceleration of blood into the ventricle is seen. The direct and retained left atrial flow components were between 44 and 57% and 43–56% of the stroke volume, respectively. In conclusion, fixed-volume particle tracing permits separation of left atrial blood flow into different components based on the transit of blood through the atrium.

Journal

Magnetic Resonance ImagingElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off