Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health

Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland,... Heavy metals content (Zn, Cu and Hg) were measured in gills, liver, gonads and muscles of perch, Perca fluviatilis (L.) and roach, Rutilus rutilus (L.) from Lake Pluszne (north-eastern Poland). Correlations between heavy metals levels and total length, weight, HSI, GSI and FCF were examined. As expected, muscles contained the significantly highest values of Hg (P ≤ .05). The concentrations of Zn were significantly higher in gills of roach and gonads of perch (P ≤ .05), while the liver of fish accumulated significantly more Cu than other organs (P ≤ .05). In all organs of perch the higher content of mercury was found (P ≤ .05). The value of Zn and Cu was highest in organs of roach (P ≤ .05) (with the exception of Zn in muscles P > .05). Sequence of metals in both species was Zn > Cu > Hg. Only in muscle tissue, Hg was significantly positive correlated with weight of roach (r = 0.811, P = .045) and perch (r = 0.652, P = .041), and total length of roach (r = 0.806, P = .005). A positive relationship was also observed between Zn concentration in gills of perch and their weight (r = 0.634, P = .049). In contrary, Zn in gills of roach decreased with weight (r = −0.693, P = .026)) and length (r = −0.668, P = .035). Cu concentration in liver of perch was statistically positively correlated with HSI (r = 0.717, P = .020), whereas Hg content in muscle tissue of roach with FCF (r = 0.643, P = .045). There was negative relationship between Hg in perch gonads and GSI (r = −0.808, P = .005). Metal pollution index (MPI) in gills, liver, gonads and muscles of roach was 7.68, 7.24, 6.77 and 3.13, respectively, whereas in these organs of perch was 3.25 (gills), 4.75 (liver), 5.84 (gonads) and 4.44 (muscles), therefore the contamination of each tissue ranged from very low contamination to low contamination. The concentration of mercury was lower than the maximum acceptable limit estimated by the Commission Regulation (EC) No 629/2008 of 2 July 2008. The values of HI and THQ were below 1, which means that consumption of these fish is not hazardous to the consumer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health

Loading next page...
 
/lp/elsevier/fish-as-a-bioindicator-of-heavy-metals-pollution-in-aquatic-ecosystem-Aa3pNhssKw
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.057
Publisher site
See Article on Publisher Site

Abstract

Heavy metals content (Zn, Cu and Hg) were measured in gills, liver, gonads and muscles of perch, Perca fluviatilis (L.) and roach, Rutilus rutilus (L.) from Lake Pluszne (north-eastern Poland). Correlations between heavy metals levels and total length, weight, HSI, GSI and FCF were examined. As expected, muscles contained the significantly highest values of Hg (P ≤ .05). The concentrations of Zn were significantly higher in gills of roach and gonads of perch (P ≤ .05), while the liver of fish accumulated significantly more Cu than other organs (P ≤ .05). In all organs of perch the higher content of mercury was found (P ≤ .05). The value of Zn and Cu was highest in organs of roach (P ≤ .05) (with the exception of Zn in muscles P > .05). Sequence of metals in both species was Zn > Cu > Hg. Only in muscle tissue, Hg was significantly positive correlated with weight of roach (r = 0.811, P = .045) and perch (r = 0.652, P = .041), and total length of roach (r = 0.806, P = .005). A positive relationship was also observed between Zn concentration in gills of perch and their weight (r = 0.634, P = .049). In contrary, Zn in gills of roach decreased with weight (r = −0.693, P = .026)) and length (r = −0.668, P = .035). Cu concentration in liver of perch was statistically positively correlated with HSI (r = 0.717, P = .020), whereas Hg content in muscle tissue of roach with FCF (r = 0.643, P = .045). There was negative relationship between Hg in perch gonads and GSI (r = −0.808, P = .005). Metal pollution index (MPI) in gills, liver, gonads and muscles of roach was 7.68, 7.24, 6.77 and 3.13, respectively, whereas in these organs of perch was 3.25 (gills), 4.75 (liver), 5.84 (gonads) and 4.44 (muscles), therefore the contamination of each tissue ranged from very low contamination to low contamination. The concentration of mercury was lower than the maximum acceptable limit estimated by the Commission Regulation (EC) No 629/2008 of 2 July 2008. The values of HI and THQ were below 1, which means that consumption of these fish is not hazardous to the consumer.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off