Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park

Fire policy optimization to maximize suitable habitat for locally rare species under different... Fire is a key ecosystem driver in savannahs and it can have large impacts on species distribution and density. A re-examination of fire management in Kruger National Park is currently under review with the objective to maintain natural ecosystem dynamics and favour tourists' ability to observe animals. We used data on location, intensity and frequency of fires and census data on three species considered as rare and of conservation concern in the park, tsessebe, roan and sable antelope to estimate the relationship between fire occurrence and species occurrence and density. We also investigated the impacts of different environmental predictors on antelope populations. The model predictors that most affected the density and presence of antelopes were mean fire return period, the type of geological substrate and the presence of water-points. We then used our models to evaluate different fire management scenarios and make recommendations for an optimal fire management strategy for the conservation of these rare antelopes. We also tested our scenarios under different precipitation conditions, in order to investigate the likely response of species to climate change. Roan antelope is the most sensitive species to climatic variations, while sable seems to be the most resilient. The approach described here can also be used to improve the conservation of locally rare species in other regions and habitats. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Conservation Elsevier

Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park

Loading next page...
 
/lp/elsevier/fire-policy-optimization-to-maximize-suitable-habitat-for-locally-rare-mI8SkCIBa1
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0006-3207
D.O.I.
10.1016/j.biocon.2015.07.021
Publisher site
See Article on Publisher Site

Abstract

Fire is a key ecosystem driver in savannahs and it can have large impacts on species distribution and density. A re-examination of fire management in Kruger National Park is currently under review with the objective to maintain natural ecosystem dynamics and favour tourists' ability to observe animals. We used data on location, intensity and frequency of fires and census data on three species considered as rare and of conservation concern in the park, tsessebe, roan and sable antelope to estimate the relationship between fire occurrence and species occurrence and density. We also investigated the impacts of different environmental predictors on antelope populations. The model predictors that most affected the density and presence of antelopes were mean fire return period, the type of geological substrate and the presence of water-points. We then used our models to evaluate different fire management scenarios and make recommendations for an optimal fire management strategy for the conservation of these rare antelopes. We also tested our scenarios under different precipitation conditions, in order to investigate the likely response of species to climate change. Roan antelope is the most sensitive species to climatic variations, while sable seems to be the most resilient. The approach described here can also be used to improve the conservation of locally rare species in other regions and habitats.

Journal

Biological ConservationElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off