Finite control set model predictive control scheme of four-switch three-phase rectifier with load current observer

Finite control set model predictive control scheme of four-switch three-phase rectifier with load... Three-phase rectifier is typically realized by six power switches. However, this rectifier is fault sensitive in power switches. To enable continued controllable operation, the grid phase with fault rectifier leg can be connected to center tap of the dc-link capacitors, known as the four-switch three-phase rectifier (FSTPR), using hardware reconfiguration. However, the symmetry of three-phase currents and reliable operation of the FSTPR cannot be retained due to the offset of the two-capacitor voltages. This paper proposes a finite control set model predictive control (FCS-MPC) to obtain the balanced three-phase current with the offset of two-capacitor voltages suppressed. The PI-Controller-free FCS-MPC with a second-order Luenberger observer is adopted to improve the dynamic performance of FSTPR. The performance of the proposed control scheme is illustrated by extensive simulation and experimental results. The comparison with the conventional voltage-oriented-control, which is based on PI controller and pulse width modulation (PWM), is also presented to show the superiority of the proposed FCS-MPC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Control Engineering Practice Elsevier

Finite control set model predictive control scheme of four-switch three-phase rectifier with load current observer

Loading next page...
 
/lp/elsevier/finite-control-set-model-predictive-control-scheme-of-four-switch-pY5257QVlm
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0967-0661
D.O.I.
10.1016/j.conengprac.2017.12.009
Publisher site
See Article on Publisher Site

Abstract

Three-phase rectifier is typically realized by six power switches. However, this rectifier is fault sensitive in power switches. To enable continued controllable operation, the grid phase with fault rectifier leg can be connected to center tap of the dc-link capacitors, known as the four-switch three-phase rectifier (FSTPR), using hardware reconfiguration. However, the symmetry of three-phase currents and reliable operation of the FSTPR cannot be retained due to the offset of the two-capacitor voltages. This paper proposes a finite control set model predictive control (FCS-MPC) to obtain the balanced three-phase current with the offset of two-capacitor voltages suppressed. The PI-Controller-free FCS-MPC with a second-order Luenberger observer is adopted to improve the dynamic performance of FSTPR. The performance of the proposed control scheme is illustrated by extensive simulation and experimental results. The comparison with the conventional voltage-oriented-control, which is based on PI controller and pulse width modulation (PWM), is also presented to show the superiority of the proposed FCS-MPC.

Journal

Control Engineering PracticeElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial