Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability

Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability Finger millet, one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol contents. Investigations of suitable solvents for extraction of polyphenols and their stability, during changes of pH and temperature, were carried out. Histochemical examination of the millet kernels, and also analysis of the seed coat and the endosperm fractions of the millet for the polyphenol contents, revealed that nearly 90% of the polyphenols were concentrated in the seed coat tissue. In view of that, the polyphenol contents of the seed coat fraction of the millet were extracted with different polar and non-polar solvents, and it was observed that 1% HCl–methanol was very effective for extraction of the millet polyphenols. Accordingly, the polyphenols were extracted with acidic methanol and the polyphenols obtained were examined for pH and temperature stability. The phenolic contents (6.4 ± 1.0%) of the extract remained constant at highly acidic to near neutral pH (6.5) but decreased gradually to 2.5 ± 0.3% as the alkalinity increased to pH 10. The increase in pH resulted in precipitation of some of the extracted matter, and this increased from 4 ± 0.5% to 40 ± 3% of the extracted matter, as the pH increased from 1 to 10. But, the polyphenol contents of the extract were stable to the changes in the temperature of the extract. Fractionation of the polyphenols extracted by high performance liquid chromatography (HPLC) showed that the analytes were derivatives of benzoic acid (gallic acid, proto-catechuic acid, and p -hydroxy benzoic acid) and cinnamic acid ( p -coumaric acid, syringic acid, ferulic acid and trans -cinnamic acid). However, in a highly alkaline condition (pH 10) of the extract, only gallic acid and proto-catechuic acid were detected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Chemistry Elsevier

Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability

Food Chemistry, Volume 105 (2) – Jan 1, 2007

Loading next page...
 
/lp/elsevier/finger-millet-polyphenols-optimization-of-extraction-and-the-effect-of-4MihKiuHBt
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier Ltd
ISSN
0308-8146
DOI
10.1016/j.foodchem.2007.02.012
Publisher site
See Article on Publisher Site

Abstract

Finger millet, one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol contents. Investigations of suitable solvents for extraction of polyphenols and their stability, during changes of pH and temperature, were carried out. Histochemical examination of the millet kernels, and also analysis of the seed coat and the endosperm fractions of the millet for the polyphenol contents, revealed that nearly 90% of the polyphenols were concentrated in the seed coat tissue. In view of that, the polyphenol contents of the seed coat fraction of the millet were extracted with different polar and non-polar solvents, and it was observed that 1% HCl–methanol was very effective for extraction of the millet polyphenols. Accordingly, the polyphenols were extracted with acidic methanol and the polyphenols obtained were examined for pH and temperature stability. The phenolic contents (6.4 ± 1.0%) of the extract remained constant at highly acidic to near neutral pH (6.5) but decreased gradually to 2.5 ± 0.3% as the alkalinity increased to pH 10. The increase in pH resulted in precipitation of some of the extracted matter, and this increased from 4 ± 0.5% to 40 ± 3% of the extracted matter, as the pH increased from 1 to 10. But, the polyphenol contents of the extract were stable to the changes in the temperature of the extract. Fractionation of the polyphenols extracted by high performance liquid chromatography (HPLC) showed that the analytes were derivatives of benzoic acid (gallic acid, proto-catechuic acid, and p -hydroxy benzoic acid) and cinnamic acid ( p -coumaric acid, syringic acid, ferulic acid and trans -cinnamic acid). However, in a highly alkaline condition (pH 10) of the extract, only gallic acid and proto-catechuic acid were detected.

Journal

Food ChemistryElsevier

Published: Jan 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off