Fine-scale temporal analysis of genotype-dependent mortality at settlement in the Pacific oyster Crassostrea gigas

Fine-scale temporal analysis of genotype-dependent mortality at settlement in the Pacific oyster... Settlement and metamorphosis mark a critical transition in the life cycle of marine invertebrates, during which substantial mortality occurs in both field and laboratory settings. Previous pair-crossing experiments with the Pacific oyster Crassostrea gigas have revealed significant selective or genotype-dependent mortality around the metamorphic transition, but the fine-scale nature and timing of this mortality is not known, particularly whether it occurs before, during or after metamorphosis. In this laboratory study, microsatellite marker segregation ratios were followed daily throughout the settlement and metamorphosis of an F2 cross of the Pacific oyster to examine the fine-scale patterns of genotype dependent mortality at this transition and whether settlement timing (early vs. late) might be under genetic control and affect inference of genotype dependent mortality. Settlement occurred over nine days (day 18 to day 27 post-fertilization) with 68% of individuals settling either early (day 19) or late (day 24). Tracking the survival of spat for 40 days after initial settlement revealed almost no mortality and thus no appreciable genetic mortality. Temporal genetic analysis revealed that 3/11 loci exhibited genotype dependent mortality around the metamorphic transition, one of which (Cg205) was followed throughout settlement and metamorphosis. Alternative temporal patterns of strong selection against each homozygous genotype at Cg205 revealed possible defects in both the competency pathway (inability to initiate metamorphosis) and the morphogenesis pathway (mortality during the metamorphic transition). Quantitative trait locus (QTL) mapping of settlement timing identified three individual and one epistatic QTL with significant genetic effects on this trait (29% of the variance explained in total); however, two of these loci were linked to markers exhibiting selective mortality at metamorphosis, potentially confounding their apparent association with settlement timing. Overall, the results of this study highlight the complex nature of mortality and behavior during settlement and metamorphosis in oysters and suggest that endogenous sources of mortality at settlement may play an important role in the recruitment dynamics of oysters and possibly other broadcast spawning marine invertebrates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Experimental Marine Biology and Ecology Elsevier

Fine-scale temporal analysis of genotype-dependent mortality at settlement in the Pacific oyster Crassostrea gigas

Loading next page...
 
/lp/elsevier/fine-scale-temporal-analysis-of-genotype-dependent-mortality-at-0ckXAP0Cit
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-0981
eISSN
1879-1697
D.O.I.
10.1016/j.jembe.2018.01.006
Publisher site
See Article on Publisher Site

Abstract

Settlement and metamorphosis mark a critical transition in the life cycle of marine invertebrates, during which substantial mortality occurs in both field and laboratory settings. Previous pair-crossing experiments with the Pacific oyster Crassostrea gigas have revealed significant selective or genotype-dependent mortality around the metamorphic transition, but the fine-scale nature and timing of this mortality is not known, particularly whether it occurs before, during or after metamorphosis. In this laboratory study, microsatellite marker segregation ratios were followed daily throughout the settlement and metamorphosis of an F2 cross of the Pacific oyster to examine the fine-scale patterns of genotype dependent mortality at this transition and whether settlement timing (early vs. late) might be under genetic control and affect inference of genotype dependent mortality. Settlement occurred over nine days (day 18 to day 27 post-fertilization) with 68% of individuals settling either early (day 19) or late (day 24). Tracking the survival of spat for 40 days after initial settlement revealed almost no mortality and thus no appreciable genetic mortality. Temporal genetic analysis revealed that 3/11 loci exhibited genotype dependent mortality around the metamorphic transition, one of which (Cg205) was followed throughout settlement and metamorphosis. Alternative temporal patterns of strong selection against each homozygous genotype at Cg205 revealed possible defects in both the competency pathway (inability to initiate metamorphosis) and the morphogenesis pathway (mortality during the metamorphic transition). Quantitative trait locus (QTL) mapping of settlement timing identified three individual and one epistatic QTL with significant genetic effects on this trait (29% of the variance explained in total); however, two of these loci were linked to markers exhibiting selective mortality at metamorphosis, potentially confounding their apparent association with settlement timing. Overall, the results of this study highlight the complex nature of mortality and behavior during settlement and metamorphosis in oysters and suggest that endogenous sources of mortality at settlement may play an important role in the recruitment dynamics of oysters and possibly other broadcast spawning marine invertebrates.

Journal

Journal of Experimental Marine Biology and EcologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off