Filtered density function modelling of near-wall scalar transport with POD velocity modes

Filtered density function modelling of near-wall scalar transport with POD velocity modes This paper addresses the problem of heat transfer in the near-wall region of a turbulent channel flow. We investigate the role of coherent eddy structures on the thermal exchange between the solid and fluid materials. In the present approach, the instantaneous velocity field is modelled by means of a low-order dynamical system based on proper orthogonal decomposition (POD) modes while the temperature field is accounted for by using a stochastic filtered density function (FDF) method. A good comparison of results with reference DNS data on mean temperature and on temperature r.m.s. at various Prandtl numbers and for different wall boundary conditions (isotemperature, isoflux, and conjugate heat transfer) is achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Heat and Fluid Flow Elsevier

Filtered density function modelling of near-wall scalar transport with POD velocity modes

Loading next page...
 
/lp/elsevier/filtered-density-function-modelling-of-near-wall-scalar-transport-with-oLvxEFC1mv
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Inc.
ISSN
0142-727X
eISSN
1879-2278
D.O.I.
10.1016/j.ijheatfluidflow.2008.11.001
Publisher site
See Article on Publisher Site

Abstract

This paper addresses the problem of heat transfer in the near-wall region of a turbulent channel flow. We investigate the role of coherent eddy structures on the thermal exchange between the solid and fluid materials. In the present approach, the instantaneous velocity field is modelled by means of a low-order dynamical system based on proper orthogonal decomposition (POD) modes while the temperature field is accounted for by using a stochastic filtered density function (FDF) method. A good comparison of results with reference DNS data on mean temperature and on temperature r.m.s. at various Prandtl numbers and for different wall boundary conditions (isotemperature, isoflux, and conjugate heat transfer) is achieved.

Journal

International Journal of Heat and Fluid FlowElsevier

Published: Feb 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off