Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells

Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and... Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H2O2)-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H2O2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H2O2-induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H2O2-stimulated cells. Furthermore, FS inhibited H2O2-induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells

Loading next page...
 
/lp/elsevier/feruloylserotonin-inhibits-hydrogen-peroxide-induced-melanogenesis-and-UFbXr8iCdP
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.07.158
Publisher site
See Article on Publisher Site

Abstract

Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H2O2)-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H2O2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H2O2-induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H2O2-stimulated cells. Furthermore, FS inhibited H2O2-induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off