Feasibility and reliability of digital imaging for estimating food selection and consumption from students’ packed lunches

Feasibility and reliability of digital imaging for estimating food selection and consumption from... Although increasing attention is placed on the quality of foods in children's packed lunches, few studies have examined the capacity of observational methods to reliably determine both what is selected and consumed from these lunches. The objective of this project was to assess the feasibility and inter-rater reliability of digital imaging for determining selection and consumption from students' packed lunches, by adapting approaches previously applied to school lunches. Study 1 assessed feasibility and reliability of data collection among a sample of packed lunches (n = 155), while Study 2 further examined reliability in a larger sample of packed (n = 386) as well as school (n = 583) lunches. Based on the results from Study 1, it was feasible to collect and code most items in packed lunch images; missing data were most commonly attributed to packaging that limited visibility of contents. Across both studies, there was satisfactory reliability for determining food types selected, quantities selected, and quantities consumed in the eight food categories examined (weighted kappa coefficients 0.68–0.97 for packed lunches, 0.74–0.97 for school lunches), with lowest reliability for estimating condiments and meats/meat alternatives in packed lunches. In extending methods predominately applied to school lunches, these findings demonstrate the capacity of digital imaging for the objective estimation of selection and consumption from both school and packed lunches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Appetite Elsevier

Feasibility and reliability of digital imaging for estimating food selection and consumption from students’ packed lunches

Loading next page...
 
/lp/elsevier/feasibility-and-reliability-of-digital-imaging-for-estimating-food-8buQqIuLPf
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0195-6663
D.O.I.
10.1016/j.appet.2017.08.037
Publisher site
See Article on Publisher Site

Abstract

Although increasing attention is placed on the quality of foods in children's packed lunches, few studies have examined the capacity of observational methods to reliably determine both what is selected and consumed from these lunches. The objective of this project was to assess the feasibility and inter-rater reliability of digital imaging for determining selection and consumption from students' packed lunches, by adapting approaches previously applied to school lunches. Study 1 assessed feasibility and reliability of data collection among a sample of packed lunches (n = 155), while Study 2 further examined reliability in a larger sample of packed (n = 386) as well as school (n = 583) lunches. Based on the results from Study 1, it was feasible to collect and code most items in packed lunch images; missing data were most commonly attributed to packaging that limited visibility of contents. Across both studies, there was satisfactory reliability for determining food types selected, quantities selected, and quantities consumed in the eight food categories examined (weighted kappa coefficients 0.68–0.97 for packed lunches, 0.74–0.97 for school lunches), with lowest reliability for estimating condiments and meats/meat alternatives in packed lunches. In extending methods predominately applied to school lunches, these findings demonstrate the capacity of digital imaging for the objective estimation of selection and consumption from both school and packed lunches.

Journal

AppetiteElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off