Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening

Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening Cyclic deformation and fatigue behavior of an iron-based shape memory alloy (Fe-SMA) Fe-17Mn-5Si-10Cr-4Ni-1(V,C) were studied. In the first step, cyclic tensile tests were performed to characterize the material's mechanical properties in tension (elongation at break, yield, and tensile strength) as well as the recovery behavior of the alloy. Furthermore, the effect of strain rate on the cyclic loading tests was investigated. It was observed that the strain rate has a clear influence on the stress-strain behavior of the alloy. In the second step, the fatigue behavior of the alloy after pre-straining and thermal activation under strain-controlled conditions was evaluated. While the stiffness of the alloy remained almost constant during high-cycle fatigue loading, a decrease in the recovery stress was observed, which should be taken into account in design assessments. The loss in the recovery stress was assumed to be mainly a result of a transformation-induced relaxation (TIR) under cyclic loading. Furthermore, this study examines the applicability of a constant life diagram (CLD) model to determine the fatigue limit of the alloy for different stress ratios (R). The existing results of the fatigue tests showed full consistency with the proposed fatigue design criterion. A formulation based on the CLD model was proposed for a safe design of the alloy as a structural pre-stressing element under a high-cycle fatigue loading regime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening

Loading next page...
 
/lp/elsevier/fatigue-behavior-of-a-fe-mn-si-shape-memory-alloy-used-for-prestressed-36rdh0OBEF
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.07.055
Publisher site
See Article on Publisher Site

Abstract

Cyclic deformation and fatigue behavior of an iron-based shape memory alloy (Fe-SMA) Fe-17Mn-5Si-10Cr-4Ni-1(V,C) were studied. In the first step, cyclic tensile tests were performed to characterize the material's mechanical properties in tension (elongation at break, yield, and tensile strength) as well as the recovery behavior of the alloy. Furthermore, the effect of strain rate on the cyclic loading tests was investigated. It was observed that the strain rate has a clear influence on the stress-strain behavior of the alloy. In the second step, the fatigue behavior of the alloy after pre-straining and thermal activation under strain-controlled conditions was evaluated. While the stiffness of the alloy remained almost constant during high-cycle fatigue loading, a decrease in the recovery stress was observed, which should be taken into account in design assessments. The loss in the recovery stress was assumed to be mainly a result of a transformation-induced relaxation (TIR) under cyclic loading. Furthermore, this study examines the applicability of a constant life diagram (CLD) model to determine the fatigue limit of the alloy for different stress ratios (R). The existing results of the fatigue tests showed full consistency with the proposed fatigue design criterion. A formulation based on the CLD model was proposed for a safe design of the alloy as a structural pre-stressing element under a high-cycle fatigue loading regime.

Journal

Materials & designElsevier

Published: Nov 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off