Fate of secondary alkane sulfonate surfactants during municipal wastewater treatment

Fate of secondary alkane sulfonate surfactants during municipal wastewater treatment A field study was conducted to determine the mass flow of secondary alkane sulfonate (SAS) surfactants in a municipal wastewater treatment plant. The concentration of SAS in samples of sewage (raw sewage, primary and secondary effluent) was determined using solid-phase extraction with C 18 disks and injection port derivatization with gas chromatography/mass selective detection (GC/MS). The concentration of SAS in raw and anaerobically-digested sludge was determined by ion-pair/supercritical fluid extraction and injection-port derivatization GC/MS. The removal of SAS from the waste stream is efficient (99.7%) with approximately 16% (w/w) transferred to sludge. Given current Swiss sludge disposal regulations, a maximum of approximately 350 mg m −2 SAS are applied every three years to a given section of agricultural soil. Of the total SAS mass flow entering the treatment plant, an average of 0.3% (w/w) is discharged to the adjacent receiving water stream. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Fate of secondary alkane sulfonate surfactants during municipal wastewater treatment

Loading next page...
 
/lp/elsevier/fate-of-secondary-alkane-sulfonate-surfactants-during-municipal-CpIz8g10ch
Publisher
Elsevier
Copyright
Copyright © 1995 Elsevier Ltd
ISSN
0043-1354
DOI
10.1016/0043-1354(94)00291-E
Publisher site
See Article on Publisher Site

Abstract

A field study was conducted to determine the mass flow of secondary alkane sulfonate (SAS) surfactants in a municipal wastewater treatment plant. The concentration of SAS in samples of sewage (raw sewage, primary and secondary effluent) was determined using solid-phase extraction with C 18 disks and injection port derivatization with gas chromatography/mass selective detection (GC/MS). The concentration of SAS in raw and anaerobically-digested sludge was determined by ion-pair/supercritical fluid extraction and injection-port derivatization GC/MS. The removal of SAS from the waste stream is efficient (99.7%) with approximately 16% (w/w) transferred to sludge. Given current Swiss sludge disposal regulations, a maximum of approximately 350 mg m −2 SAS are applied every three years to a given section of agricultural soil. Of the total SAS mass flow entering the treatment plant, an average of 0.3% (w/w) is discharged to the adjacent receiving water stream.

Journal

Water ResearchElsevier

Published: May 1, 1995

References

  • LAS removal and biodegradation in a wastewater treatment plant
    Cavalli, L.; Gellera, A.; Landone, A.
  • LAS homolog distribution shift during wastewater treatment and composting: ecological implications
    Prats, D.; Ruiz, F.; Váquez, B.; Zarzo, D.; Berna, J.L.; Moreno, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off