Failure behaviour of silicone adhesive in bonded connections with simple geometry

Failure behaviour of silicone adhesive in bonded connections with simple geometry In façade structures, adhesively bonded connections between glass panels and metallic substructures represent an attractive alternative to mechanical fixation devices. Apart from positive aspects regarding the construction's energy efficiency and aesthetics, the uniform load transfer reduces stress concentrations in the adherends, which is beneficial especially regarding brittle materials like glass. Structural silicone sealants are generally used for these kind of applications due to their excellent adhesion on glass and their exceptional resistance against environmental influences and ageing. For the verification of the bonded connection, non-linear numerical simulations, such as the Finite Element Method, are increasingly used. The resulting three-dimensional stress states need to be assessed with the help of an appropriate failure criterion. In this paper, an overview is given on available failure criteria for rubber-like materials. The applicability of these criteria on the silicone sealant is verified regarding three characteristic stress states: uniaxial tension, shear and compression. The proposed engineering failure criterion is the true strain magnitude, which is valid for bonded connections in form of linear beads for cohesive failure of the adhesive. For Dow Corning® 993 structural silicone sealant, the strain magnitude, evaluated using true strains, at failure could be determined as 1.6. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Failure behaviour of silicone adhesive in bonded connections with simple geometry

Loading next page...
 
/lp/elsevier/failure-behaviour-of-silicone-adhesive-in-bonded-connections-with-K5bXOM9u8b
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2017.12.015
Publisher site
See Article on Publisher Site

Abstract

In façade structures, adhesively bonded connections between glass panels and metallic substructures represent an attractive alternative to mechanical fixation devices. Apart from positive aspects regarding the construction's energy efficiency and aesthetics, the uniform load transfer reduces stress concentrations in the adherends, which is beneficial especially regarding brittle materials like glass. Structural silicone sealants are generally used for these kind of applications due to their excellent adhesion on glass and their exceptional resistance against environmental influences and ageing. For the verification of the bonded connection, non-linear numerical simulations, such as the Finite Element Method, are increasingly used. The resulting three-dimensional stress states need to be assessed with the help of an appropriate failure criterion. In this paper, an overview is given on available failure criteria for rubber-like materials. The applicability of these criteria on the silicone sealant is verified regarding three characteristic stress states: uniaxial tension, shear and compression. The proposed engineering failure criterion is the true strain magnitude, which is valid for bonded connections in form of linear beads for cohesive failure of the adhesive. For Dow Corning® 993 structural silicone sealant, the strain magnitude, evaluated using true strains, at failure could be determined as 1.6.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off