Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer solar cells

Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer... Photon harvesting by the active layers of bulk heterojunction (BHJ) polymer solar cells (PSCs) greatly influences the power conversion efficiency (PCE) of the devices. Inclusion of novel metal nanostructures in photoactive layers is one of the effective ways to enhance light trapping without increasing the device thickness. Here, we demonstrate a dramatic enhancement (up to 43%) of the power conversion efficiency (PCE) by exploiting gold nanostructures (AuNSs)-embedded graphene oxide (GO) as the hole transporting layer (HTL) in BHJ PSCs. The enhancement of the device performance could be attributed to the increase in both short circuit current density (Jsc) and fill factor (FF). The increased FF is most likely the result of the enhanced charge collection through modified HTL and anode contact. Furthermore, the optical properties of the photovoltaic devices suggest that AuNSs cause light trapping via plasmonic effects resulting enhanced Jsc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer solar cells

Loading next page...
 
/lp/elsevier/facile-embedding-of-gold-nanostructures-in-the-hole-transporting-layer-sNXBEWDUCW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.029
Publisher site
See Article on Publisher Site

Abstract

Photon harvesting by the active layers of bulk heterojunction (BHJ) polymer solar cells (PSCs) greatly influences the power conversion efficiency (PCE) of the devices. Inclusion of novel metal nanostructures in photoactive layers is one of the effective ways to enhance light trapping without increasing the device thickness. Here, we demonstrate a dramatic enhancement (up to 43%) of the power conversion efficiency (PCE) by exploiting gold nanostructures (AuNSs)-embedded graphene oxide (GO) as the hole transporting layer (HTL) in BHJ PSCs. The enhancement of the device performance could be attributed to the increase in both short circuit current density (Jsc) and fill factor (FF). The increased FF is most likely the result of the enhanced charge collection through modified HTL and anode contact. Furthermore, the optical properties of the photovoltaic devices suggest that AuNSs cause light trapping via plasmonic effects resulting enhanced Jsc.

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off