Facile conversion of activated carbon to battery anode material using microwave graphitization

Facile conversion of activated carbon to battery anode material using microwave graphitization As the most commonly used anode material, graphite is crucial to the battery industry and other energy storage applications. Natural graphite is classified as a supply risk material, and the artificial graphitization process is extremely inefficient, so an alternative method of making graphite for use as an anode material is highly desired. In this work, activated carbon powder is graphitized by microwave irradiation with catalyst precursor impregnation. Further, the characteristics of microwave-graphitized activated carbon powder as an anode material in lithium ion batteries are investigated. After 5 min of microwave irradiation, a graphite (002) peak develops at 26.46° in the X-ray diffraction pattern (the corresponding d002 was 3.3664 Å), and the IG/ID ratio in Raman spectra increases from 1.07 to 1.89. As an anode material, graphitized active carbon exhibits stable charge–discharge processes typical of graphite (plateau around 0.2 V). These results indicate that microwave irradiation is an effective way to produce graphitic carbon from low-crystalline activated carbon for use as an anode material. We believe they pave the way to research toward a stable supply of anode material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carbon Elsevier

Facile conversion of activated carbon to battery anode material using microwave graphitization

Loading next page...
 
/lp/elsevier/facile-conversion-of-activated-carbon-to-battery-anode-material-using-rMC7Dpj32H
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0008-6223
D.O.I.
10.1016/j.carbon.2016.03.021
Publisher site
See Article on Publisher Site

Abstract

As the most commonly used anode material, graphite is crucial to the battery industry and other energy storage applications. Natural graphite is classified as a supply risk material, and the artificial graphitization process is extremely inefficient, so an alternative method of making graphite for use as an anode material is highly desired. In this work, activated carbon powder is graphitized by microwave irradiation with catalyst precursor impregnation. Further, the characteristics of microwave-graphitized activated carbon powder as an anode material in lithium ion batteries are investigated. After 5 min of microwave irradiation, a graphite (002) peak develops at 26.46° in the X-ray diffraction pattern (the corresponding d002 was 3.3664 Å), and the IG/ID ratio in Raman spectra increases from 1.07 to 1.89. As an anode material, graphitized active carbon exhibits stable charge–discharge processes typical of graphite (plateau around 0.2 V). These results indicate that microwave irradiation is an effective way to produce graphitic carbon from low-crystalline activated carbon for use as an anode material. We believe they pave the way to research toward a stable supply of anode material.

Journal

CarbonElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off