Facile conversion of activated carbon to battery anode material using microwave graphitization

Facile conversion of activated carbon to battery anode material using microwave graphitization As the most commonly used anode material, graphite is crucial to the battery industry and other energy storage applications. Natural graphite is classified as a supply risk material, and the artificial graphitization process is extremely inefficient, so an alternative method of making graphite for use as an anode material is highly desired. In this work, activated carbon powder is graphitized by microwave irradiation with catalyst precursor impregnation. Further, the characteristics of microwave-graphitized activated carbon powder as an anode material in lithium ion batteries are investigated. After 5 min of microwave irradiation, a graphite (002) peak develops at 26.46° in the X-ray diffraction pattern (the corresponding d002 was 3.3664 Å), and the IG/ID ratio in Raman spectra increases from 1.07 to 1.89. As an anode material, graphitized active carbon exhibits stable charge–discharge processes typical of graphite (plateau around 0.2 V). These results indicate that microwave irradiation is an effective way to produce graphitic carbon from low-crystalline activated carbon for use as an anode material. We believe they pave the way to research toward a stable supply of anode material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carbon Elsevier

Facile conversion of activated carbon to battery anode material using microwave graphitization

Loading next page...
 
/lp/elsevier/facile-conversion-of-activated-carbon-to-battery-anode-material-using-rMC7Dpj32H
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0008-6223
D.O.I.
10.1016/j.carbon.2016.03.021
Publisher site
See Article on Publisher Site

Abstract

As the most commonly used anode material, graphite is crucial to the battery industry and other energy storage applications. Natural graphite is classified as a supply risk material, and the artificial graphitization process is extremely inefficient, so an alternative method of making graphite for use as an anode material is highly desired. In this work, activated carbon powder is graphitized by microwave irradiation with catalyst precursor impregnation. Further, the characteristics of microwave-graphitized activated carbon powder as an anode material in lithium ion batteries are investigated. After 5 min of microwave irradiation, a graphite (002) peak develops at 26.46° in the X-ray diffraction pattern (the corresponding d002 was 3.3664 Å), and the IG/ID ratio in Raman spectra increases from 1.07 to 1.89. As an anode material, graphitized active carbon exhibits stable charge–discharge processes typical of graphite (plateau around 0.2 V). These results indicate that microwave irradiation is an effective way to produce graphitic carbon from low-crystalline activated carbon for use as an anode material. We believe they pave the way to research toward a stable supply of anode material.

Journal

CarbonElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial