Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground

Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated... This study investigated the preparation of magnetic biochar from N2- and CO2-assisted pyrolysis of spent coffee ground (SCG) for use as an adsorption medium for As(V), and the effects of FeCl3 pretreatment of SCG on the material properties and adsorption capability of the produced biochar. Pyrolysis of FeCl3-pretreated SCG in CO2 atmosphere produced highly porous biochar with its surface area ∼70 times greater than that produced in N2 condition. However, despite the small surface area, biochar produced in N2 showed greater As(V) adsorption capability. X-ray diffraction and X-ray photoelectron spectrometer analyses identified Fe3C and Fe3O4 as dominant mineral phases in N2 and CO2 conditions, with the former being much more adsorptive toward As(V). The overall results suggest functional biochar can be facilely fabricated by necessary pretreatment to expand the applicability of biochar for specific purposes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground

Loading next page...
 
/lp/elsevier/fabrication-of-magnetic-biochar-as-a-treatment-medium-for-as-v-via-KOP0rqOlOW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.07.079
Publisher site
See Article on Publisher Site

Abstract

This study investigated the preparation of magnetic biochar from N2- and CO2-assisted pyrolysis of spent coffee ground (SCG) for use as an adsorption medium for As(V), and the effects of FeCl3 pretreatment of SCG on the material properties and adsorption capability of the produced biochar. Pyrolysis of FeCl3-pretreated SCG in CO2 atmosphere produced highly porous biochar with its surface area ∼70 times greater than that produced in N2 condition. However, despite the small surface area, biochar produced in N2 showed greater As(V) adsorption capability. X-ray diffraction and X-ray photoelectron spectrometer analyses identified Fe3C and Fe3O4 as dominant mineral phases in N2 and CO2 conditions, with the former being much more adsorptive toward As(V). The overall results suggest functional biochar can be facilely fabricated by necessary pretreatment to expand the applicability of biochar for specific purposes.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off