Extracellular vesicles in neurodegenerative diseases

Extracellular vesicles in neurodegenerative diseases Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Aspects of Medicine Elsevier

Extracellular vesicles in neurodegenerative diseases

Loading next page...
 
/lp/elsevier/extracellular-vesicles-in-neurodegenerative-diseases-To4cqM0TYh
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0098-2997
eISSN
1872-9452
D.O.I.
10.1016/j.mam.2017.11.006
Publisher site
See Article on Publisher Site

Abstract

Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.

Journal

Molecular Aspects of MedicineElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off