Expression of far upstream element-binding protein 1 correlates with c-Myc expression in sacral chordomas and is associated with tumor progression and poor prognosis

Expression of far upstream element-binding protein 1 correlates with c-Myc expression in sacral... The far upstream element (FUSE)-binding protein 1 (FUBP1), a well-known transcriptional regulator of the proto-oncogene c-Myc, has been demonstrated by previous work to be aberrantly expressed in a variety of tumors and plays a critical role in tumor progression; however, its expression and function in relatively rare and aggressive chordomas remains unclear. In this retrospective study, we reviewed clinicopathologic characteristics of 40 patients diagnosed with sacral chordoma, and analyzed 40 tumor and 20 distant normal tissues obtained from patients during the primary surgical tumor excision. Using immunohistochemistry, we observed an up-regulation in the expression of FUBP1 and c-Myc in sacral chordomas compared with the normal tissues (P = 0.001 for both). Additionally, positive correlations of FUBP1 expression with c-Myc (γ = 0.651, P < 0.001) and the cell proliferation index Ki-67 expression (γ = 0.447, P = 0.004) were indicated using Spearman's rank correlation coefficient. Increased expression of FUBP1 was significantly associated with tumor invasion into the surrounding muscles (P = 0.002). Kaplan-Meier curves demonstrated the association between FUBP1 levels and the patients' local recurrence-free survival (LRFS) (P < 0.001) but not with the overall survival (OS) (P = 0.070). The independent prognostic significance of FUBP1 levels for the LRFS was indicated by multivariate analysis (HR = 4.272; 95% CI, 1.133–16.112; P = 0.032). Our findings demonstrate an association between FUBP1 levels and chordoma progression and prognosis, suggesting that FUBP1 can be used as a biomarker and a potential therapeutic target. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Expression of far upstream element-binding protein 1 correlates with c-Myc expression in sacral chordomas and is associated with tumor progression and poor prognosis

Loading next page...
 
/lp/elsevier/expression-of-far-upstream-element-binding-protein-1-correlates-with-c-ho8IEuub87
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.08.008
Publisher site
See Article on Publisher Site

Abstract

The far upstream element (FUSE)-binding protein 1 (FUBP1), a well-known transcriptional regulator of the proto-oncogene c-Myc, has been demonstrated by previous work to be aberrantly expressed in a variety of tumors and plays a critical role in tumor progression; however, its expression and function in relatively rare and aggressive chordomas remains unclear. In this retrospective study, we reviewed clinicopathologic characteristics of 40 patients diagnosed with sacral chordoma, and analyzed 40 tumor and 20 distant normal tissues obtained from patients during the primary surgical tumor excision. Using immunohistochemistry, we observed an up-regulation in the expression of FUBP1 and c-Myc in sacral chordomas compared with the normal tissues (P = 0.001 for both). Additionally, positive correlations of FUBP1 expression with c-Myc (γ = 0.651, P < 0.001) and the cell proliferation index Ki-67 expression (γ = 0.447, P = 0.004) were indicated using Spearman's rank correlation coefficient. Increased expression of FUBP1 was significantly associated with tumor invasion into the surrounding muscles (P = 0.002). Kaplan-Meier curves demonstrated the association between FUBP1 levels and the patients' local recurrence-free survival (LRFS) (P < 0.001) but not with the overall survival (OS) (P = 0.070). The independent prognostic significance of FUBP1 levels for the LRFS was indicated by multivariate analysis (HR = 4.272; 95% CI, 1.133–16.112; P = 0.032). Our findings demonstrate an association between FUBP1 levels and chordoma progression and prognosis, suggesting that FUBP1 can be used as a biomarker and a potential therapeutic target.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off