Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance

Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances... Abiotic stresses are a major factor limiting crop growth and productivity. The Arabidopsis thaliana glutaredoxin S17 (AtGRXS17) gene has conserved functions in plant tolerance to heat and chilling stress in Arabidopsis and, when expressed ectopically, in tomato. Here, we report that ectopic expression of AtGRXS17 in tomato also enhanced tolerance to drought and oxidative stress. AtGRXS17-expressing tomato plants contained twice the shoot water content compared to wild-type plants under water limiting conditions. This enhanced drought tolerance correlated with a higher maximal photosynthetic efficiency of photosystem II (Fv/Fm). Ectopic AtGRXS17-expression was concomitant with the expression of Solanum lycopersicum catalase 1 (SlCAT1) and mitigated defects in the growth of primary roots in response to methyl viologen exposure. In addition, AtGRXS17 expression was found to prolong elevated expression levels of the Solanum lycopersicum ABA-responsive element binding protein 1 (SlAREB1) during drought stress. The findings demonstrate that expression of AtGRXS17 can simultaneously improve the tolerance of tomato, and possibly other agriculturally important crops, to drought, heat, and chilling stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance

Loading next page...
 
/lp/elsevier/expression-of-a-monothiol-glutaredoxin-atgrxs17-in-tomato-solanum-45sTSIJEq1
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.08.006
Publisher site
See Article on Publisher Site

Abstract

Abiotic stresses are a major factor limiting crop growth and productivity. The Arabidopsis thaliana glutaredoxin S17 (AtGRXS17) gene has conserved functions in plant tolerance to heat and chilling stress in Arabidopsis and, when expressed ectopically, in tomato. Here, we report that ectopic expression of AtGRXS17 in tomato also enhanced tolerance to drought and oxidative stress. AtGRXS17-expressing tomato plants contained twice the shoot water content compared to wild-type plants under water limiting conditions. This enhanced drought tolerance correlated with a higher maximal photosynthetic efficiency of photosystem II (Fv/Fm). Ectopic AtGRXS17-expression was concomitant with the expression of Solanum lycopersicum catalase 1 (SlCAT1) and mitigated defects in the growth of primary roots in response to methyl viologen exposure. In addition, AtGRXS17 expression was found to prolong elevated expression levels of the Solanum lycopersicum ABA-responsive element binding protein 1 (SlAREB1) during drought stress. The findings demonstrate that expression of AtGRXS17 can simultaneously improve the tolerance of tomato, and possibly other agriculturally important crops, to drought, heat, and chilling stresses.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off