Exploiting the fracture properties of carbon fibre composites to design lightweight energy absorbing structures

Exploiting the fracture properties of carbon fibre composites to design lightweight energy... The survivability of a Formula driver in an accident is achieved by a combination of the crash resistance of the car and its ability to absorb energy. This has been achieved by providing a survival cell (the chassis), which is extremely resistant to damage, around which energy absorbing devices are placed at strategic points on the vehicle. Since the late 1980s the controlling body of Formula 1, FIA, has introduced a series of regulations to ensure that the cars conform to stringent safety requirements and build quality. Each vehicle must satisfy a list of requirements, in the form of officially witnessed tests, before it is allowed to race. There are two groups of tests that must be passed. The first is a series of static loads applied to the chassis, which guarantees the strength and integrity of the survival cell. The second series defines the position, and effectiveness of the energy absorbing structures. In order to keep the weight of the car to a minimum, some of the energy absorbing devices are also required to perform a structural function in addition to their ability to absorb energy by controlled disintegration. The Rear Impact Structure (RIMP), for example, sits on the differential cover at the rear of the gearbox. The function of this device is to react the downforce generated by the rear wing assembly as well as to provide protection in the event of a crash. Engineering structures are generally designed such that they do not fail. Producing a component, which is specifically intended to fail in a catastrophic, but controlled manner, presents a unique set of problems to the designer. When the same piece is also required to perform as a load-bearing member, the engineering problems are far more acute. The design process from materials selection to a finished component is discussed for an F1 RIMP. Particular reference is made to the design and analysis process and how it deals with the conflicting aspects of controlled fracture and load bearing durability. The analysis and testing process required to prove the piece fit for purpose and homologated for competition are also covered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

Exploiting the fracture properties of carbon fibre composites to design lightweight energy absorbing structures

Engineering Failure Analysis, Volume 11 (5) – Oct 1, 2004

Loading next page...
 
/lp/elsevier/exploiting-the-fracture-properties-of-carbon-fibre-composites-to-nMtEFioUSy
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
1350-6307
eISSN
1873-1961
D.O.I.
10.1016/j.engfailanal.2004.01.001
Publisher site
See Article on Publisher Site

Abstract

The survivability of a Formula driver in an accident is achieved by a combination of the crash resistance of the car and its ability to absorb energy. This has been achieved by providing a survival cell (the chassis), which is extremely resistant to damage, around which energy absorbing devices are placed at strategic points on the vehicle. Since the late 1980s the controlling body of Formula 1, FIA, has introduced a series of regulations to ensure that the cars conform to stringent safety requirements and build quality. Each vehicle must satisfy a list of requirements, in the form of officially witnessed tests, before it is allowed to race. There are two groups of tests that must be passed. The first is a series of static loads applied to the chassis, which guarantees the strength and integrity of the survival cell. The second series defines the position, and effectiveness of the energy absorbing structures. In order to keep the weight of the car to a minimum, some of the energy absorbing devices are also required to perform a structural function in addition to their ability to absorb energy by controlled disintegration. The Rear Impact Structure (RIMP), for example, sits on the differential cover at the rear of the gearbox. The function of this device is to react the downforce generated by the rear wing assembly as well as to provide protection in the event of a crash. Engineering structures are generally designed such that they do not fail. Producing a component, which is specifically intended to fail in a catastrophic, but controlled manner, presents a unique set of problems to the designer. When the same piece is also required to perform as a load-bearing member, the engineering problems are far more acute. The design process from materials selection to a finished component is discussed for an F1 RIMP. Particular reference is made to the design and analysis process and how it deals with the conflicting aspects of controlled fracture and load bearing durability. The analysis and testing process required to prove the piece fit for purpose and homologated for competition are also covered.

Journal

Engineering Failure AnalysisElsevier

Published: Oct 1, 2004

References

  • Carbon-carbon composites
    Savage, G.M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off