Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts

Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An... Polypharmacology has been increasingly advocated for the therapeutic intervention in complex pathological conditions, exemplified by cancer. Although kinase inhibitors (KIs) have revolutionized the treatment for certain types of malignancies, some major medical needs remain unmet due to the relentless advance of drug resistance and insufficient efficacy of mono-target KIs. Hence, “multiple targets, multi-dimensional activities” represents an emerging paradigm for innovative anti-cancer drug discovery. Over recent years, considerable leaps have been made in pursuit of kinase-centric polypharmacological anti-cancer therapeutics, providing avenues to tackling the limitation of mono-target KIs. In the review, we summarize the clinically important mechanisms inducing KI resistance and depict a landscape of recent medicinal chemistry efforts on exploring kinase-centric polypharmacological anti-cancer agents that targeting multiple cancer-related processes. In parallel, some inevitable challenges are emphasized for the sake of more accurate and efficient drug discovery in the field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts

Loading next page...
 
/lp/elsevier/exploiting-polypharmacology-for-improving-therapeutic-outcome-of-EfJLErSxTp
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.11.049
Publisher site
See Article on Publisher Site

Abstract

Polypharmacology has been increasingly advocated for the therapeutic intervention in complex pathological conditions, exemplified by cancer. Although kinase inhibitors (KIs) have revolutionized the treatment for certain types of malignancies, some major medical needs remain unmet due to the relentless advance of drug resistance and insufficient efficacy of mono-target KIs. Hence, “multiple targets, multi-dimensional activities” represents an emerging paradigm for innovative anti-cancer drug discovery. Over recent years, considerable leaps have been made in pursuit of kinase-centric polypharmacological anti-cancer therapeutics, providing avenues to tackling the limitation of mono-target KIs. In the review, we summarize the clinically important mechanisms inducing KI resistance and depict a landscape of recent medicinal chemistry efforts on exploring kinase-centric polypharmacological anti-cancer agents that targeting multiple cancer-related processes. In parallel, some inevitable challenges are emphasized for the sake of more accurate and efficient drug discovery in the field.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off