Experimental realisation of off-stoichiometric Fe-Mn-Si full Heusler alloy with hexagonal crystal structure by pulsed laser deposition

Experimental realisation of off-stoichiometric Fe-Mn-Si full Heusler alloy with hexagonal crystal... Full Heusler alloys are well known to either crystallize in a cubic structure (Cu2MnAl-type), or present tetragonal distortions. Both structure types present interesting properties, like room temperature magnetic memory shape effect and/or remarkable magnetocaloric effect, mainly ruled by strong magnetostructural coupling. Due to this interplay, our aim was to produce a new crystal phase for the Heusler alloys, different from those well-established cubic and tetragonal, responsible for those well-known physical properties. Thus, we have produced nanoparticles of full Heusler alloys using a pulsed laser deposition technique (from targets of Fe2MnSi) and obtained a core-shell pattern, presenting an amorphous shell and a crystalline core, with hexagonal symmetry. In accordance with these experimental findings, it was shown, by means of density functional calculation, the existence of a minimum of energy as a function of the hexagonal lattice parameters, with a true indication that the hexagonal phase is metastable. The magnetic properties differ considerably from those of bulk Fe2MnSi, including an increase of the Curie temperature from 220 K to 295 K, which is of potential interest for room-temperature applications. This work opens the door to research in a new family of materials, whose properties have only now begun to be explored. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Experimental realisation of off-stoichiometric Fe-Mn-Si full Heusler alloy with hexagonal crystal structure by pulsed laser deposition

Loading next page...
 
/lp/elsevier/experimental-realisation-of-off-stoichiometric-fe-mn-si-full-heusler-O0sxOyv5X6
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2018.01.062
Publisher site
See Article on Publisher Site

Abstract

Full Heusler alloys are well known to either crystallize in a cubic structure (Cu2MnAl-type), or present tetragonal distortions. Both structure types present interesting properties, like room temperature magnetic memory shape effect and/or remarkable magnetocaloric effect, mainly ruled by strong magnetostructural coupling. Due to this interplay, our aim was to produce a new crystal phase for the Heusler alloys, different from those well-established cubic and tetragonal, responsible for those well-known physical properties. Thus, we have produced nanoparticles of full Heusler alloys using a pulsed laser deposition technique (from targets of Fe2MnSi) and obtained a core-shell pattern, presenting an amorphous shell and a crystalline core, with hexagonal symmetry. In accordance with these experimental findings, it was shown, by means of density functional calculation, the existence of a minimum of energy as a function of the hexagonal lattice parameters, with a true indication that the hexagonal phase is metastable. The magnetic properties differ considerably from those of bulk Fe2MnSi, including an increase of the Curie temperature from 220 K to 295 K, which is of potential interest for room-temperature applications. This work opens the door to research in a new family of materials, whose properties have only now begun to be explored.

Journal

Materials & designElsevier

Published: Apr 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off