Experimental investigation on the effects of nozzle-hole number on combustion and emission characteristics of ethanol/diesel dual-fuel engine

Experimental investigation on the effects of nozzle-hole number on combustion and emission... Since fuel reactivity stratification greatly influences the combustion process of dual-fuel engines and nozzle geometry directly affects the distribution of direct injected fuel, experiments were carried out to investigate the effects of nozzle-hole number on the combustion and emissions of dual-fuel engine. The experiments were performed on a single-cylinder diesel engine with port injection of ethanol and direct injection of diesel. There are four diesel injectors with 4, 5, 6 and 8 nozzle holes studied in this paper, while the total orifice areas and included spray angles of the injectors are kept the same. With reduced nozzle holes, the experimental results showed that both the in-cylinder peak pressure and PPRR (peak pressure rise rate) of ethanol/diesel dual-fuel combustion were decreased while with extended combustion durations. This is mainly because the number of high fuel reactivity regions was reduced with fewer diesel sprays, then the combustion of premixed ethanol was slowed down which consequently decreased the heat release rate. With reduced nozzle holes, the engine-out NOx emissions were decreased, and soot emissions were slightly increased while still maintained at quite low level. The UHC and CO emissions were slightly increased with reduced nozzle holes which resulted in lower combustion efficiency. However, the influences of nozzle-hole number on dual-fuel combustion were gradually decreased with advanced injection, which was mainly because of the enhanced diesel/air mixing. The experimental results indicated that dual-fuel combustion with reduced nozzle holes could achieve moderate heat release with lower PPRR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Experimental investigation on the effects of nozzle-hole number on combustion and emission characteristics of ethanol/diesel dual-fuel engine

Loading next page...
 
/lp/elsevier/experimental-investigation-on-the-effects-of-nozzle-hole-number-on-E5C0KFfCig
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.12.024
Publisher site
See Article on Publisher Site

Abstract

Since fuel reactivity stratification greatly influences the combustion process of dual-fuel engines and nozzle geometry directly affects the distribution of direct injected fuel, experiments were carried out to investigate the effects of nozzle-hole number on the combustion and emissions of dual-fuel engine. The experiments were performed on a single-cylinder diesel engine with port injection of ethanol and direct injection of diesel. There are four diesel injectors with 4, 5, 6 and 8 nozzle holes studied in this paper, while the total orifice areas and included spray angles of the injectors are kept the same. With reduced nozzle holes, the experimental results showed that both the in-cylinder peak pressure and PPRR (peak pressure rise rate) of ethanol/diesel dual-fuel combustion were decreased while with extended combustion durations. This is mainly because the number of high fuel reactivity regions was reduced with fewer diesel sprays, then the combustion of premixed ethanol was slowed down which consequently decreased the heat release rate. With reduced nozzle holes, the engine-out NOx emissions were decreased, and soot emissions were slightly increased while still maintained at quite low level. The UHC and CO emissions were slightly increased with reduced nozzle holes which resulted in lower combustion efficiency. However, the influences of nozzle-hole number on dual-fuel combustion were gradually decreased with advanced injection, which was mainly because of the enhanced diesel/air mixing. The experimental results indicated that dual-fuel combustion with reduced nozzle holes could achieve moderate heat release with lower PPRR.

Journal

FuelElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off