Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series

Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid... In this study five asymmetric hybrid solar collectors with flat plate receiver connected in series are investigated experimentally and mathematically through analytical expressions deriving from heat transfer and thermodynamics fundamentals. The main objective of this study is to evaluate the collectors' performance in terms of thermal energy and exergy production under various operating conditions thus the experiments are performed at open circuit mode regarding their electrical part and with water as working fluid. Concerning the theoretical analysis, the developed model combines optical, thermal and flow analysis for the determination of both first and second law efficiencies and it is validated against experimental data with an acceptable agreement being observed. Following the model validation, the performance of the collectors is analyzed in terms of thermal and exergy efficiency, thermal losses and absorber temperature. After the thermal analysis, the mathematical model is further developed so as to take into account the electrical production for the overall performance evaluation of the compound parabolic PVT solar collectors. Among the main findings, the final experimental results proved that these solar collectors connected in series work efficiently throughout the year as they are able to produce about 2.2 kW useful energy in summer, 2.8 kW in spring and 2.6 kW in autumn. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series

Loading next page...
 
/lp/elsevier/experimental-and-theoretical-performance-investigation-of-asymmetric-05qTh2hyX8
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.11.049
Publisher site
See Article on Publisher Site

Abstract

In this study five asymmetric hybrid solar collectors with flat plate receiver connected in series are investigated experimentally and mathematically through analytical expressions deriving from heat transfer and thermodynamics fundamentals. The main objective of this study is to evaluate the collectors' performance in terms of thermal energy and exergy production under various operating conditions thus the experiments are performed at open circuit mode regarding their electrical part and with water as working fluid. Concerning the theoretical analysis, the developed model combines optical, thermal and flow analysis for the determination of both first and second law efficiencies and it is validated against experimental data with an acceptable agreement being observed. Following the model validation, the performance of the collectors is analyzed in terms of thermal and exergy efficiency, thermal losses and absorber temperature. After the thermal analysis, the mathematical model is further developed so as to take into account the electrical production for the overall performance evaluation of the compound parabolic PVT solar collectors. Among the main findings, the final experimental results proved that these solar collectors connected in series work efficiently throughout the year as they are able to produce about 2.2 kW useful energy in summer, 2.8 kW in spring and 2.6 kW in autumn.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off